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A B S T R A C T

Serpentine interconnects (serpentines) with various degrees of curvature are often designed to absorb
deformations and protect brittle active components in flexible devices. Serpentines with small curvature are
modelled well using the traditional theory for doing so, but this overestimates the stretchability of serpentines
with large curvature (e.g. the relative error exceeds 90%). Proposed here is a novel theoretical model in
which a non-buckling serpentine is characterized as a large-curvature beam. Analytical solutions are derived,
and systematic experiments and numerical simulations are reported to validate the accuracy and investigate
geometrical dependence. It is found that (i) dimensionless geometrical parameters regulate the compliant
mechanics of a serpentine, (ii) there is a certain arc angle that produces abnormal stretchability (i.e. the
normalized stretchability is less than unity) and (iii) the flexibility and stretchability can be enhanced by
between two and five orders of magnitude. This work offers a new way to construct optimal serpentine ribbons
with large curvature for various applications.
. Introduction

Modern advances in soft materials and manufacturing technology
particularly regarding extreme mechanics – have accelerated the

evelopment of flexible devices, which are the foundations for system-
evel biomedicine (Chung et al., 2020; Morikawa et al., 2019, 2018),
ptoelectronics (Ko et al., 2008; Yeo et al., 2013) and communica-
ion applications (Zhang et al., 2021; Fu et al., 2018; Jeong et al.,
013). These devices have significant advantages over well-established
afer-based technologies, such as having the flexibility and stretcha-
ility needed for sophisticated environments (Fan et al., 2014; Hong
t al., 2015; Zhang et al., 2014); these properties are designed to
ithstand extreme deformation without losing electrical functionality.
pecifically, high stretchability allows excessive elastic deformation
nd shields electrical components mechanically to avoid device failure,
hile high flexibility avoids having to impose mechanical restraints on

he targeted biological tissues (Ma et al., 2016; Xu et al., 2013).
Flexible devices generally comprise active components and electri-

al interconnects (Chung et al., 2020; Morikawa et al., 2019, 2018;
o et al., 2008; Yeo et al., 2013; Zhang et al., 2021; Fu et al., 2018;
eong et al., 2013). Because the former are hard and brittle, they are
ttached to stiff islands that are permanently bonded to the flexible
ubstrate (Guan et al., 2018b; Yang et al., 2018; Guan et al., 2018a),
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and these are then networked by electronic interconnects to build a
whole system for exchanging information with the outside environ-
ment. This effective design paradigm is known as the island–bridge
architecture: the islands remain rigid, and the interconnects are largely
responsible for absorbing any strain at system level (Someya et al.,
2004; Brosteaux et al., 2007; Kim et al., 2008; Yeo et al., 2013; Jeong
et al., 2013). However, to maintain excellent device performance, the
stiff islands must cover a large area, leaving less design space for
electrical interconnects. Therefore, the main challenge with these elec-
trical interconnects is how to integrate responses with extremely high
flexibility and stretchability within limited space. To date, many design
strategies for electrical interconnects have been developed, including
geometry-dependent serpentine design (Someya et al., 2004; Brosteaux
et al., 2007), fractal patterns (Fan et al., 2014) and origami/kirigami
motifs (Kim et al., 2008; Yeo et al., 2013; Jeong et al., 2013; Xu
et al., 2013). As evident from Fig. 1, of all these paradigms, the
mechanics and geometry design for serpentine ribbons are particularly
prominent (Someya et al., 2004; Brosteaux et al., 2007; Kim et al.,
2008; Yeo et al., 2013; Jeong et al., 2013; Xu et al., 2013; Fan et al.,
2014; Zhang et al., 2014; Jang et al., 2015; Xu et al., 2015; Liu et al.,
2016a; Jang et al., 2017; Fu et al., 2018; Kim et al., 2021; Hwang et al.,
2022), with curvature playing a significant role in creating the extreme
mechanics of geometry-dependent serpentines.
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Fig. 1. Recent advancements in mechanics, materials and applications for the ultrastretchable serpentine-based flexible devices. (Online version in colour.)
Recently, two different serpentine classifications have been ad-
vanced for investigating serpentine-engineered elasticity (Zhang et al.,
2014; Fan et al., 2016; Widlund et al., 2014; Yang et al., 2017; Pan
et al., 2017), these being based on the ratio �̄� of beam width to
curvature radius. The first type of serpentine ribbon (i.e. those with
�̄� < 0.2) provides lower electrical resistance for functional devices such
as radiofrequency coils (Brosteaux et al., 2007), while the second type
involves a curved beam with �̄� ⩾ 0.2—known as a large-curvature
beam (LCB)—and is widespread in flexible devices and offers a wider
range of applications (Fu et al., 2018; Kim et al., 2021; Hwang et al.,
2022; Zhang et al., 2014; Fan et al., 2016; Widlund et al., 2014; Yang
et al., 2017; Pan et al., 2017). Timoshenko & Goodier (Timoshenko,
1951) compared elasticity theory with LCB theory and classical beam
theory for the pure bending of curved beams, discovering that the
elasticity and LCB solutions agreed well; for �̄� < 0.2, the relative error
of the pure-bending normal stress between beam theory and the LCB
solution was always less than 7%, but using beam theory to assess
LCBs was inappropriate because of their significant margin of relative
error for �̄� > 0.2. Therefore, to appreciate the fundamental relationship
among flexibility, stretchability, and geometry, a theoretical model for
serpentine ribbons with various degrees of curvature (Zhang et al.,
2014; Fan et al., 2016; Widlund et al., 2014; Yang et al., 2017;
Pan et al., 2017) must be developed. To the best of our knowledge,
the implications of significant curvature on the compliant mechanics
of serpentines are yet to be studied, and the issue of stretchability-
related abnormal mechanics has received relatively little attention.
The only related work involved creating a theoretical model of beams
without accounting for large curvature (Fan et al., 2016; Widlund
et al., 2014; Pan et al., 2017; Cicconofri and DeSimone, 2015; Yin
et al., 2019), thereby failing to foresee the need for large-curvature
serpentine ribbons in flexible devices. Even though a complex elasticity
theory (Yang et al., 2017) based on approximating boundary conditions
has been developed for serpentines with particular geometries, it is not
easily applicable to the optimization design and analyses of serpentine
ribbons, as required for maximum stretchability under geometrically
constrained conditions or limited spaces (Hwang et al., 2022; Jin et al.,
2021; Zhang et al., 2021; Kim et al., 2018; Li et al., 2017; Raney et al.,
2

2016; Liu et al., 2016b; Rafsanjani et al., 2015).
In the present study, a theoretical model for an ultrastretchable
non-buckling serpentine ribbon as an LCB (e.g. �̄� = 1) is developed
and confirmed using experiments, numerical computations and precise
elasticity theory. The overall concept that emerges offers a paradigm
for designing serpentine ribbons that are as flexible and stretchable
as possible. The paper is structured as follows. The analytical strategy
from the energy principle is summarized in Section 2. In Section 3, sev-
eral theoretical solutions are compared, and it is shown how flexibility
and stretchability rely on geometry. The experimental validation is also
presented in Section 3 together with the numerical and experimental
methodologies. The optimal design technique is illustrated in Section 4,
and a summary is provided in Section 5.

2. Theoretical model

Here, we design the serpentine ribbon as a unidirectional periodic
material; see Fig. 2a for details and Fig. 2b for its typical unit cell.
In the analytical model, the radius 𝑅 and arc angle 𝛼 describe the arc
sections, the arm section of length 𝑙 is the unique geometrical element
for expanding the design space, and the maximum distances for the unit
cell in the 𝑥 and 𝑦 directions are L𝑥 and L𝑦, respectively, as shown in
Fig. 2b. The end-to-end length of the unit cell is determined by

𝑥 = 4 (𝑅 cos 𝛼 − 𝑙 sin 𝛼) , (1)

and if the arc angle is specified as 𝛼 = −𝜋∕2, then the serpentine ribbon
becomes a straight beam of length 𝑥 = 4𝑙.

These fundamental assumptions allow us to build a dimensionless
closed-form theory that involves three independent dimensionless geo-
metrical parameters, i.e. �̄� = 𝑤∕𝑅, 𝛼 and 𝑙 = 𝑙∕𝑅; note that different
combinations of these three parameters can be used to investigate
different serpentine designs. Here, we develop the expanded formulas
for a serpentine ribbon as an LCB based on the energy method.

The purpose of the present study is to develop a method for design-
ing the flexibility and stretchability of a family of serpentine ribbons
using an LCB (�̄� ⩾ 0.2). Fig. 2c shows how the simplified analytical
model is carefully built for any geometrical alterations for this purpose.
The left end of the LCB is assumed to be a hinged support, and the
simplified model is loaded with a force 𝐹 and a moment 𝑀𝑜 assuming

that its right end is free. The closed-form solutions for the normalized
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Fig. 2. Illustrations of the serpentine unit cell and simplified model with prescribed geometry parameters and boundary conditions labelled. (a) One-directional periodic model of
the serpentine ribbon. (b) The representative unit cell with associated geometric parameters. (c) The simplified model and its boundary conditions. (Online version in colour.)
flexibility and stretchability are determined using the energy method
from plane-strain beam theory and LCB theory; see Appendix A for
details. In particular, the normalized flexibility  (corresponding to a
straight beam of length 𝑥) is given by

 = 2𝑢𝑎𝐸𝐴∕𝐹𝑥, (2)

where 𝑢𝑎 is the applied displacement corresponding to 𝐹 (for details,
see Eq. (A.1) in Appendix A), and 𝐸 and 𝐴 are the plane-strain modulus
and the cross-sectional area, respectively. The second key index is the
normalized stretchability  , which is calculated as

 = 𝜀𝑓𝑎 ∕𝜀
𝑓
𝑚 = 𝜀𝑎∕𝜀max, (3)

where 𝜀𝑓𝑎 and 𝜀𝑓𝑚 are the elastic stretchability (i.e., the maximum strain
that can be achieved in the elastic deformation range of the serpentine
ribbon under tension) and intrinsic failure strain, respectively. Corre-
sponding to 𝑢𝑎, here 𝜀𝑎 is the applied strain, and 𝜀max is the maximum
strain of the LCB. It is important to note that the failure criterion (Wang
and Wang, 2021, 2020, 2022; Wang et al., 2020) is determined using

𝜀𝑓𝑚 = 𝜀max, (4)

and for premium inorganic electronic materials such as silicon and
nitride dielectrics, the related rupture strain is represented by 𝜀𝑓𝑚.

The following relationships allow the energy approach to be used to
determine the normalized flexibility and stretchability in terms of the
dimensionless geometrical parameters �̄�, 𝛼 and 𝑙:

 = 
(

�̄�, 𝛼, 𝑙, (�̄�)
)

= (�̄�4𝑑1 +  2𝑑2 +  �̄�2𝑑3 + cos (2𝛼) 𝑑4
+ sin (2𝛼) 𝑑5)∕𝑑6,

 = 
(

�̄�, 𝛼, 𝑙, (�̄�)
)

= (�̄�4𝑑1 +  2𝑑2 +  �̄�2𝑑3 + cos (2𝛼) 𝑑4
+ sin (2𝛼) 𝑑5)∕𝑑7,

(5)

where  = 1 − �̄�∕(ln (2 + �̄�) − ln (2 − �̄�)) is associated with the large-
curvature effect. The explicit forms (𝑑1 ∼ 𝑑7) of  and  are given in
Appendix A; see Eqs. (A.10) and (A.15).

Curvilinear coordinates and elasticity theory (the Airy stress func-
tion) are used to find the precise solutions for various geometries
to understand fully how large curvature affects  and  for ultra-
stretchable serpentine ribbons; see Appendix B for further information.
Also, by either taking the expansion of ln (𝑏∕𝑎) in elasticity theory
[for details, see Eq. (C.1) to three orders] or neglecting the curvature
effects in LCB theory [for details, see Eq. (C.3) and 𝑦∕𝑅 (1 −  ) ≪ 1 in
Appendix C], the degenerate analytical LCB solutions [i.e. the solutions
of so-called conventional beam (CB) theory] are demonstrated in Ap-
3

pendix C. In Appendix D, particular analytical solutions are refined to
give important results for constructing flexible devices experimentally;
for example, in the case of 𝛼 = 𝑙 = 0, we have the following brief
expressions:

 ≈ 103𝜋∕100 + 3(𝜋2 − 8)∕𝜋�̄�2,

 ≈ (𝜋2(300 + 103�̄�2) − 2400)∕600 (𝜋 − 2) �̄�.
(6)

However, because of the intricacy of the general closed-form solutions,
more research is required to determine how geometry, material, and
significant curvature affect the normalized flexibility and stretchability,
and the next sections detail this procedure. Additionally, it is critical to
recognize that for non-buckling serpentine structures, the generalized
theoretical model elaborated in this paper offers substantial insight into
the correlation between flexibility, stretchability, and various dimen-
sionless geometric parameters. However, the assumption disregarding
nonlinear deformation effects is not applicable to serpentine structures
that endure substantial deformation prior to structural failure. Pre-
dictions grounded in infinitesimal deformation theory might lead to
considerable overestimation of stretchability when compared to those
based on finite deformation theory. Future investigations will focus on
the interplay of significant curvature and finite deformation effects in
serpentine structures.

3. Results and discussion

3.1. Experimental demonstration

Using a high-precision universal testing system (model 5965; In-
stron, USA), tensile experiments were carried out to subject serpentine
ribbons to quasistatic loading. The samples were designed using solid
modelling software and then 3D printed in resin (UV curing). To avoid
lateral buckling, we selected a large thickness-to-width ratio (such as
𝑡∕𝑤 > 10). For a nonbuckling serpentine ribbon, the specimen was
clamped carefully with skidproof chunks on the tensile tester, and then
using a high-resolution camera, the geometrical deformation of the
serpentine ribbon was captured as precisely as possible. Based on the
accurate stress–strain curves generated from the tests, we can deter-
mine the flexibility, elastic stretchability and intrinsic failure strain
for a straight beam and a serpentine ribbon with the same end-to-
end length. Finally, according to Eq. (5), experimental verification is
possible for the corresponding mechanical parameters. Our findings
using the LCB model should be relevant and applicable for engineer-
ing scenarios over a wide variety of length scales once the practical
results are found to agree with the theoretical solutions and numerical

simulations.
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Fig. 3. Experimental samples and comparison of the theoretical, numerical and experimental results for the normalized stretchability of the serpentine ribbon. (a) 3D-printing samples
(UV curing technique). (b) Comparison of experimental data, LCB solutions and FEM results for the normalized stretchability when 𝛼 = 𝑙 = 0. (c) Comparison of experiments, LCB
solutions and FEM results for the normalized stretchability when 𝛼 = 0 and �̄� = 3∕5. (d) Comparison of experiments, LCB solutions and FEM results for the normalized stretchability
when �̄� = 1∕2 and 𝑙 = 3. (Online version in colour.)
Numerical analysis was performed using ABAQUS software, with
the plane-strain finite-element method (FEM) and Eq. (3) used to
simplify the problem. For high-quality inorganic silicon, its Young’s
modulus and Poisson ratio are 130 GPa and 0.27, respectively, and ac-
cording to the basic assumptions of elasticity theory, the applied strain
can be taken as 0.01. Finally, to ensure accuracy, all the simulations
involved refined meshes.

Fig. 3 compares the normalized stretchability as given by our
theory, experiments and FEM results. Moreover, the force–displacement
curves obtained from the experiments are provided in Appendix E. The
prevention of lateral buckling for the 3D printed samples in Fig. 3a
ensured that the serpentine ribbons deformed entirely in-plane. With-
out the arc angle and arm section, Fig. 3b shows the stretchability
as a function of ribbon width. Similar to the theoretical predictions,
the serpentine ribbon generally breaks on the inside of the curved
beam (see the FEM and experimental results in Fig. 3b). The evolution
of stretchability in relation to arm length is seen in Fig. 3c. With a
constant ribbon width and arm length, Fig. 3d shows the stretchability
as a function of arc angle. The experimentally determined normalized
stretchability is in strikingly good agreement with the analytical solu-
tion, as shown in Fig. 3. By combining LCB theory, the dimensionless
model and the energy principle, the findings are quite precise. These
results imply that our findings can be extended to large-curvature
serpentine ribbons while maintaining ultra-high stretchability, going
beyond the narrow serpentines as used originally.

3.2. Comparison of theories

The main mechanical characteristics of serpentine ribbons are re-
vealed using plane-strain elasticity theory, LCB theory and CB theory.
4

In elasticity theory, we can calculate the displacement field caused
by the specified loading. Finally, according to Eq. (3), the normalized
stretchability 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 based on elasticity theory can be calculated
using the following elegant form:

𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 = 𝑎(𝑏2 + 𝑎2)𝜋∕(𝑏 − 𝑎)(𝑏 + 𝑎)2, (7)

where 𝑎 = 𝑅 − 𝑤∕2 and 𝑏 = 𝑅 + 𝑤∕2. The detailed form of Eq. (7) is
given in Appendix B: see Eq. (B.19).

The conventional theory can then be formed using the series expan-
sion approach. By taking the expansion of ln (𝑏∕𝑎) = 𝑤𝑎−1 − 𝑤2∕2𝑎2 +
𝑤3∕3𝑎3 to three orders and neglecting the higher-order terms [see
Eqs. (C.1) and (C.2) in Appendix C for details], the displacement field
can be refined. Equally, based on Eq. (3), the normalized stretchability
𝐶𝐵 from CB theory can be given as

𝐶𝐵 = (𝑑1 + cos (2𝛼) 𝑑2 + sin (2𝛼) 𝑑3)∕𝑑5, (8)

where 𝑑1, 𝑑2, 𝑑3 and 𝑑5 are functions of the dimensionless geometrical
parameters. The explicit form of Eq. (8) is given in Appendix C: see
Eqs. (C.11) and (C.12) for details.

For a good grasp of how significant curvature influences stretcha-
bility, the relative error 𝛿 [%] between LCB theory and CB theory is
defined as

𝛿 = (‖| − |

|

𝐶𝐵
‖

‖

∕||) × 100%, (9)

where  is the normalized stretchability from LCB theory as given
by Eq. (5).

Fig. 4 compares elasticity theory, LCB theory and CB theory accord-
ing to Eqs. (5), (7) and (8). With increasing �̄� (resp. 𝑙),  decreases
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Fig. 4. Comparison of the elasticity theory, LCB theory and conventional beam (CB) theory, and distribution of the relative error with respect to the normalized stretchability. (a)
Comparison of theoretical results for normalized stretchability as the function of �̄� based on the exact elasticity theory and our LCB theory. (b) Comparison of theoretical results
for normalized stretchability as the function of 𝑙 based on our LCB theory and CB theory. (c) Distribution of the relative error between the LCB theory and CB theory when 𝛼 = 0.
(d) Distribution of the relative error between the LCB theory and CB theory when �̄� = 3∕5. (e) Distribution of the relative error between the LCB theory and Widlund’s curved
beam theory (Widlund et al., 2014) when 𝛼 = 0. (f) Distribution of the relative error between the LCB theory and Widlund’s curved beam theory (Widlund et al., 2014) when
�̄� = 3∕5. (Online version in colour.)
(resp. increases). The closed-form LCB solution agrees quite well with
the solution from elasticity theory for the particular shape in Fig. 4a.
This implies that both theories can predict  accurately over a wide
range of �̄� (such as �̄� ⩾ 0.2). However, LCB theory and CB theory differ
significantly in Fig. 4b, which indicates that simple bending strain is
insufficient for defining large-curvature serpentine ribbons.

For �̄� < 0.2, LCB theory and CB theory are related [see Eqs. (C.3)
and (C.4) in Appendix C for details], this being because the crucial
integral ∫ 𝑦2∕ 1 + 𝑦∕𝑅 1 −  𝑑𝐴 degenerates into what is known as
5

𝐴 ( ( ))
the second-area moment. When 𝑦 and 𝑅 (1 −  ) are comparable rather
than 𝑦 ≪ 𝑅 (1 −  ) (i.e. very slender serpentines), it is difficult to obtain
precise results for normalized stretchability by using CB theory. For
example, in Fig. 4c the relative error 𝛿 is as high as 120%, and in
Fig. 4d it reaches 90%.

In addition, we compare the LCB theory with the Widlund’s curved
beam theory (Widlund et al., 2014). The large curvature effect of
the serpentine is neglected in their theory. Using the same geometric
parameters, we can also define the relative error 𝛿∗ between the LCB
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Fig. 5. Geometry dependence and distribution of the normalized flexibility  for the different dimensionless geometry parameters �̄�, 𝛼 and 𝑙. (a) The natural logarithm of
normalized flexibility versus �̄� when 𝛼 = 0 and 0 ⩽ 𝑙 ⩽ 5. (b) The natural logarithm of normalized flexibility versus 𝑙 when 𝛼 = 0 and 1∕10 ⩽ �̄� ⩽ 1. (c) The reciprocal of normalized
flexibility as the function of 𝛼 when �̄� = 3∕5 and 1∕10 ⩽ 𝑙 ⩽ 5. (d) The reciprocal of normalized flexibility as the function of 𝛼 when 𝑙 = 1∕2 and 1∕10 ⩽ �̄� ⩽ 1. (e) Distribution of
the reciprocal of normalized flexibility when �̄� = 4∕5. (f) Distribution of the reciprocal of normalized flexibility when 𝑙 = 1∕2. (Online version in colour.)
theory and the Widlund’s curved beam theory. Equally, curved beam
theory gives imprecise results for the serpentines with large curvature.
Corresponding to the geometric parameters in Fig. 4c and d, the
relative errors 𝛿∗ are as high as 80% (see Fig. 4e) and 90% (see Fig. 4f),
respectively.

In summary, large curvature appears to play a significant role
in the underlying mechanics of serpentine ribbons, and we recom-
mend that the analytical modelling and accompanying device design
be carried out with caution. Geometrical sensitivity and dependence
regarding various mechanical aspects are still unresolved issues that
merit additional investigation.
6

3.3. Geometrical dependence of flexibility

Based on LCB theory, Fig. 5 shows the geometry dependency
of the normalized flexibility with reference to the serpentine ribbon
(see Appendix A for details). The impacts of the ribbon width-to-radius
ratio �̄� and the arm length-to-radius ratio 𝑙 on the natural logarithm
of the normalized flexibility are shown specifically in Fig. 5a and
b. Naturally, the normalized flexibility decreases with increasing �̄�
for fixed 𝑙, and a longer arm length results in considerably increased
normalized flexibility  for given �̄�. Fig. 5c and d show how the
arc angle 𝛼 influences the reciprocal 1∕ of the normalized flexibility
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for varying �̄� and 𝑙. The flexibility  increases with increasing 𝛼,
and increasing �̄� results in a lower  for given 𝛼. Nevertheless, three
essential characteristics should be mentioned. (1) For 𝛼 = −𝜋∕2, the
erpentine ribbon becomes a straight beam, from which follows that
he normalized flexibility  is unity according to Eqs. (5) and (A.1) (or
∕ = 1; see Fig. 5c and d for details). (2) Because the arc angle
s limited mathematically by the non-overlapping nature of serpen-
ine ribbons as LCBs, further research on ultrastretchable serpentines
hould also incorporate optimization design and analysis. (3) While the
eometry dependences of �̄�, 𝛼 and 𝑙 regarding  are all monotonic,
ncreasing the arm length can in fact improve the normalized flexibility
ignificantly (such as  = 𝑒10.2 = 26903.2 (i.e., the flexibility can be

enhanced by 5 orders of magnitude) in the case of 𝛼 = 0, 𝑙 = 5 and �̄� =
0.1). These events – which result from the same long-arm effects as in
Fig. 5b – offer significant proof of ultra-high flexibility for biomedical
devices for health monitoring (Yeo et al., 2013; Song et al., 2020;
Sim et al., 2020; Hong et al., 2019; Ashley et al., 2019) and precision
therapy (Hong et al., 2015, 2019; Wu et al., 2017; Song et al., 2019),
energy devices (Hwang et al., 2022; Zhang et al., 2021; Rafsanjani
et al., 2015) and antennas (Wang et al., 2017; Song et al., 2014; Zhu
et al., 2019), as well as artificial metamaterials (Liu et al., 2016b; Zhang
et al., 2021; Coulais et al., 2016; Frenzel et al., 2016; Shan et al., 2015)
(such as unusual swelling behaviour, thermal expansion, multistability
and programmability).

Fig. 5e and f show the distributions of the normalized flexi-
bility for independent �̄�, 𝛼 and 𝑙. The phase distribution diagrams
offer an additional theoretical tool for developing extreme mechanics,
where serpentine-shaped patterns are used to create new classes of
ultra-high-flexibility mechanisms that take advantage of the geometry
dependency. Also, the contour diagrams provide in-depth knowledge
about the graphs in Fig. 5a–d.

3.4. Geometrical dependence of stretchability

Fig. 6 shows how geometry affects the normalized stretchability
 of the serpentine ribbon as an LCB. From Fig. 6a and b, we
conclude that both evolutions of 1∕ are monotonic. The reciprocal
of the normalized stretchability increases with increasing �̄�, suggest-
ing that in principle a wider ribbon always suppresses its in-plane
rotation. The corresponding tendency is inverted as the arm length is
increased; specifically, a serpentine ribbon with larger �̄� and smaller
𝑙 can experience far more bending strain than can a thin one. With
increasing arc angle 𝛼, Fig. 6c and d show more information about
the geometry dependence of the normalized stretchability. First, a
monotonic increase of 1∕ followed by a drop from its maximum value,
after which it varies in a narrow range. However, the following three
results are notable. (1) For 𝛼 = −𝜋∕2, the serpentine ribbon becomes
a straight beam, therefore we have 1∕ =  = 1. (2) The theoretical
solutions show that in some cases, 1∕ = 𝜀max∕𝜀𝑎 [see equation (3)
for details] can exceed unity, which indicates that the peak strain 𝜀max
may exceed the applied strain 𝜀𝑎. (3) The normalized stretchability
f the serpentine ribbon can still be increased significantly by long-
rm effects (such as  = 17.6056 (that is, the stretchability can be
nhanced by 2 orders of magnitude) for 𝛼 = 0.1, 𝑙 = 0.5 and �̄� =
0.1), and the corresponding contributions and ensuing extremely high
stretchability are consistent with earlier experiments, such as those
for epidermal electronics (Jeong et al., 2013; Kim et al., 2011; Yeo
et al., 2013), fingertip electrotactile actuators (Li et al., 2017; Jeong
et al., 2013; Jang et al., 2015, 2017), ultrastretchable batteries (Xu
et al., 2013) and high-performance flexible electronics (Yin et al., 2019;
Jeong et al., 2012; Someya et al., 2004; Hong et al., 2019; Song et al.,
2020; Wang and Wang, 2022). These findings show clearly that careful
normalized-stretchability design based on the appropriate theories is
necessary, because not all serpentine geometries give increased  . For
instance, if we choose an improper shape, then the peak strain will
7

be larger than the applied strain, resulting in 1∕ > 1 and  < 1. In
Section 4, we report a study of the optimal design of  with a number
of geometrically limited requirements to circumvent this problem.

Finally, Fig. 6e and f show the phase distribution diagrams
of 1∕ for −𝜋∕2 ⩽ 𝛼 ⩽ 𝜋∕6, 0 ⩽ �̄� ⩽ 1 and 0 ⩽ 𝑙 ⩽ 50.
The potential for increasing the stretchability of serpentine ribbons
greatly by several orders of magnitude is realized by having broader
dimensionless geometries.

4. Optimization design

It is crucial and necessary to understand better the stretchability
of serpentine ribbons under the geometrical constraints imposed by
non-overlapping geometry and existing technological bottlenecks (such
as the restricted resolution of photolithography Widlund et al., 2014;
Wang et al., 2020). In this case, we report a serpentine optimization
study to obtain the greatest stretchability based on LCB theory. Ob-
viously, from Figs. 2 and 7a, the length L𝑥 controls the minimum
distance between two adjacent unit cells, which signifies that L𝑥 is non-
negative (i.e. L̄𝑥 = L𝑥∕𝑅 ⩾ 0). Simultaneously, from the geometrical
analysis (see Fig. 7a for details), we have the following equations to
calculate the nonnegative L𝑥 and dimensionless length L̄𝑥:

𝑥 = 2(L𝑎
𝑥 − L𝑏

𝑥 − L𝑐
𝑥) ⩾ 0 ⇒ L̄𝑥 = 2(L̄𝑎

𝑥 − L̄𝑏
𝑥 − L̄𝑐

𝑥) ⩾ 0, (10)

where L̄𝑎
𝑥 = (1 − �̄�∕2) cos 𝛼, L̄𝑏

𝑥 = 2𝑙 sin 𝛼 and L̄𝑐
𝑥 = (1 + �̄�∕2) (1 − cos 𝛼).

The next step is to identify the second condition, i.e. the geometrical
onstraint. As evident from Figs. 2 and 7a, we can first designate a
inimum in-plane length L̄𝑦 = L𝑦∕𝑅 = 𝜉�̄� to generate the serpen-

ine ribbon with maximum stretchability, where 𝜉 is a prefactor and
eflects the degree of geometrical restriction. According to Fig. 7a, the
imensionless in-plane length L̄𝑦 is calculated as

̄
𝑦 = 𝜉�̄� = 2(1 + �̄�∕2 + sin 𝛼 + 𝑙 cos 𝛼). (11)

With these fundamental assumptions, combining Eqs. (5), (10) and
11) gives Fig. 7b to achieve the maximum stretchability ()max (or
1∕)min) for the serpentine ribbon. The degree of geometrical restric-
ion ranges from 𝜉 = 6 to 26, and the black dots in Fig. 7b correspond
o the optimal geometries based on LCB theory. It is important to
ote that the colour bar in Fig. 7b represents the reciprocal of the
ormalized stretchability. With the optimal parameters (�̄�)𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛
nd

(

𝑙
)

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛, the maximum arc angle (𝛼)max can be identified
ccording to the non-negativity of Eq. (10). Fig. 7c shows the op-
imal designs and results for various 𝜉 (i.e. 6 ⩽ 𝜉 ⩽ 26). As a
emonstration, if we designate the in-plane breadth of the serpentine
ibbon as being six times larger than �̄�, then the optimal shape with
aximum stretchability is given by

{

𝑙, �̄�, 𝛼
}

= {0.122, 0.699, 0.715}. The
accuracy of our optimization technique is comparable to that of the
Lagrangian-multiplier optimization approach, and finally note that it is
a straightforward, quick and efficient way of determining the maximum
stretchability.

5. Conclusion

The results presented herein show the significant curvature effects
of ultrastretchable serpentine ribbons for flexible devices using LCB
theory, elasticity theory, CB theory, FEM calculations and experiments.
The precise LCB and elasticity solutions shed light on the geometrical
dependences of normalized flexibility and stretchability. Our research
shows that serpentine ribbons with long arms and narrow ribbons
are extremely flexible and stretchable; via the long-arm effects, the
flexibility and stretchability can be increased by between two and five
orders of magnitude. The relative error between LCB and CB solutions
is more than 90%, and the arc angle has a significant impact on abnor-
mal stretchability (i.e. the normalized stretchability is less than one).
Along with an optimization design with geometrical restrictions, these
results suggest that a large distribution of dimensionless parameters

and a related database would be helpful for expediting the search for
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Fig. 6. Geometry dependence and distribution of the normalized stretchability  for the varying �̄�, 𝛼 and 𝑙. (a) The reciprocal of normalized stretchability versus �̄� when 𝛼 = 0
and 0 ⩽ 𝑙 ⩽ 5. (b) The reciprocal of normalized stretchability versus 𝑙 when 𝛼 = 0 and 1∕10 ⩽ �̄� ⩽ 1. (c) The reciprocal of normalized stretchability as the function of 𝛼 when
�̄� = 3∕5 and 1∕10 ⩽ 𝑙 ⩽ 5. (d) The reciprocal of normalized stretchability as the function of 𝛼 when 𝑙 = 1∕2 and 1∕10 ⩽ �̄� ⩽ 1. (e) Distribution of the reciprocal of normalized
stretchability when �̄� = 4∕5. (f) Distribution of the reciprocal of normalized stretchability when 𝑙 = 1∕5. (Online version in colour.)
the highest stretchability in serpentine-based devices. Derived from
meticulous experiments and rigorous testing, our findings reveal a
substantial enhancement in the flexibility and stretchability of the
serpentines with large curvature. This significant improvement paves
the way for their auspicious integration into flexible devices. In the
realm of bioelectronics, serpentines with various degrees of curvature
demonstrate an impressive capacity to adapt to the dynamic environ-
ment of biological systems without compromising their functionality.
8

In the context of communication technology, the augmented flexibility
could be instrumental in the evolution of wearable and portable devices
that necessitate high conformability. Moreover, within the domains of
photovoltaics and energy storage, these findings insinuate the potential
to devise more efficient, flexible solar cells and batteries that can
be seamlessly integrated onto diverse surfaces. Further, these results
not only broaden the design horizons for ultrastretchable serpentine
ribbons with large curvature, but also pioneer a new benchmark for
their performance in the face of extreme deformation.
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Fig. 7. Optimization analysis and design for the ultrastretchable serpentine ribbon with geometrically constrained conditions. (a) Non-overlapping geometry nature and geometrically
constrained conditions in the unit cell. (b) Distribution of the reciprocal of normalized stretchability for 𝑙 and �̄� when the degree of geometric restriction 6 ⩽ 𝜉 ⩽ 26. (c) The final
optimized serpentine shapes, with maximum normalized stretchability, under various geometry constraints for the range of 6 ⩽ 𝜉 ⩽ 26. Here, 𝜉 represents a prefactor that indicates
the degree of geometrical restriction. For different values of 𝜉, the corresponding optimized shapes are characterized by

{

𝑙, �̄�, 𝛼
}

. (Online version in colour.)
,
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Appendix A. Large curvature beam theory

We can define the normalized flexibility as

 = 𝑢𝑎𝐹
′∕𝑢′𝑎𝐹 = 2𝑢𝑎𝐸𝐴∕𝐹𝑥 (A.1)

where 𝑥 = 4 (𝑅 cos 𝛼 − 𝑙 sin 𝛼) represents the end-to-end length of the
nit cell. The expression 𝑢𝑎∕𝐹 corresponds to the flexibility of the

serpentine ribbon, while 𝑢′𝑎∕𝐹
′ is the flexibility of a straight beam. The

internal force equilibrium of a LCB as detailed in Fig. 2c gives

𝑁𝐴𝑟𝑐 = 𝐹 cos 𝜃, 𝑉𝐴𝑟𝑐 = 𝐹 sin 𝜃, 𝑀𝐴𝑟𝑐 = 𝐹𝑅 (1 − cos 𝜃) −𝑀𝑜 (A.2)

𝑁𝐴𝑟𝑚 = −𝐹 sin 𝛼, 𝑉𝐴𝑟𝑚 = 𝐹 cos 𝛼,

𝐴𝑟𝑚 = 𝐹
(

𝑅 + 𝑅 sin 𝛼 + 𝑠2 cos 𝛼
)

−𝑀𝑜
(A.3)

where 𝑁 and 𝑉 represent the internal axial, shear forces, respectively.
𝑀 is the internal moment for the LCB.

Utilizing the energy method and boundary condition for 𝜃 = 0,
we can link the unknown 𝑀𝑜 and generalized displacement using the
following relation, that is

𝜕U∕𝜕𝑀𝑜 = 𝜕
(

U𝐴𝑟𝑐 + U𝐴𝑟𝑚
)

∕𝜕𝑀𝑜 = 0 (A.4)

where U = U𝐴𝑟𝑐 + U𝐴𝑟𝑚 is the elastic strain energy.
Previous theoretical construction of curved beams with respect to

erpentine ribbon is found to be only applicable to �̄� = 𝑤∕𝑅 <
1∕5. According to the LCB theory, we develop the extended model
formulation for the serpentine ribbon with �̄� ⩾ 1∕5 (such as �̄� = 1).
For the arc section in Fig. 2, the strain energy U𝐴𝑟𝑐 can be calculated
by

U𝐴𝑟𝑐 = ∫

(𝜋∕2+𝛼)𝑅

0

(

𝑀2
𝐴𝑟𝑐∕2𝐸𝑆𝑅 +𝑀𝐴𝑟𝑐𝑁𝐴𝑟𝑐∕𝐸𝐴𝑅

+𝑁2
𝐴𝑟𝑐∕2𝐸𝐴 + 𝜅𝑉 2

𝐴𝑟𝑐∕2𝐺𝐴

)

𝑑𝑠1 (A.5)

as to the strain energy of arm section U𝐴𝑟𝑚

U𝐴𝑟𝑚 = ∫

𝑙

0

(

𝑁2
𝐴𝑟𝑚∕2𝐸𝐴 + 𝜅𝑉 2

𝐴𝑟𝑚∕2𝐺𝐴 +𝑀2
𝐴𝑟𝑚∕2𝐸𝐼

)

𝑑𝑠2 (A.6)

where 𝐺 is shear modulus, 𝜅 is the energy correction coefficient, 𝐴 = 𝑤
is the area of cross section, 𝐼 = 𝑤3∕12 represents the second-area
moment of cross section, 𝑆 = 𝑤𝑅 is the static moment of the cross
section on neutral axis, indicating the large curvature effects, and  =
1 − �̄�∕(ln (2 + �̄�) − ln (2 − �̄�)). 𝐸 = 𝐸′∕(1 − 𝜇′2) and 𝐸′ are plane strain
modulus and Young’s modulus, respectively. 𝜇′ represents the Poisson’s
ratio.

According to Eqs. (A.5) and (A.6), the generalized displacements
with regard to arc and arm can be given by

𝜕U𝐴𝑟𝑐∕𝜕𝑀𝑜 =
(

𝐴
(

𝑀𝑜 − 𝐹𝑅
)

(𝜋 + 2𝛼) + 2𝐹 (𝐴𝑅 − 𝑆) cos 𝛼
)

∕2𝐴𝐸𝑆

𝜕U𝐴𝑟𝑚∕𝜕𝑀𝑜 = 𝑙
(

2𝑀𝑜 − 2𝐹𝑅 − 𝐹 𝑙 cos 𝛼 − 2𝐹𝑅 sin 𝛼
)

∕2𝐸𝐼

(A.7)

By plugging Eq. (A.7) into the boundary condition from Eq. (A.4),
we obtain

𝑀𝑜 = 𝐹

(

𝐴𝑅 (𝐼𝜋 + 2𝑙𝑆 + 2𝐼𝛼 + 2𝑙𝑆 sin 𝛼)

+(2𝐼𝑆 + 𝐴𝑙2𝑆 − 2𝐴𝐼𝑅) cos 𝛼

)

(𝐴 (2𝑙𝑆 + 𝐼 (𝜋 + 2𝛼)))−1

(A.8)

To establish the normalized flexibility of serpentine ribbon with the
LCB, the relationship between the loading and displacement needs to be
refined. With the 𝑀𝑜 in hand, Moore Integral method can be adopted
to calculate the displacement 𝑢𝑎 = 2

(

𝛿𝐴𝑟𝑐 + 𝛿𝐴𝑟𝑚
)

corresponding to 𝐹 ,
as to 𝛿𝐴𝑟𝑐 and 𝛿𝐴𝑟𝑚

𝛿𝐴𝑟𝑐 = ∫

(𝜋∕2+𝛼)𝑅

0

⎛

⎜

⎜

⎜

⎝

𝑀𝐴𝑟𝑐�̄�𝐴𝑟𝑐∕𝐸𝑆𝑅 +𝑁𝐴𝑟𝑐�̄�𝐴𝑟𝑐∕𝐸𝐴𝑅

+𝑀𝐴𝑟𝑐�̄�𝐴𝑟𝑐∕𝐸𝐴𝑅 +𝑁𝐴𝑟𝑐�̄�𝐴𝑟𝑐∕𝐸𝐴

+𝜅𝑉𝐴𝑟𝑐𝑉𝐴𝑟𝑐∕𝐺𝐴

⎞

⎟

⎟

⎟

⎠

𝑑𝑠1

𝛿𝐴𝑟𝑚 =
𝑙
(

𝑀𝐴𝑟𝑚�̄�𝐴𝑟𝑚∕𝐸𝐼 +𝑁𝐴𝑟𝑚�̄�𝐴𝑟𝑚∕𝐸𝐴 + 𝜅𝑉𝐴𝑟𝑚𝑉𝐴𝑟𝑚∕𝐺𝐴
)

𝑑𝑠2

(A.9)
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𝛷

where �̄� , 𝑉 and �̄� are the internal force components of the LCB
when 𝐹 = 1. By substituting Eq. (A.9) and applied displacement 𝑢𝑎
into Eq. (A.1), the normalized flexibility can be written in terms of the
dimensionless form as

 = (�̄�4𝑑1 +  2𝑑2 + + �̄�2𝑑3 + cos (2𝛼) 𝑑4 + sin (2𝛼) 𝑑5)∕𝑑6 (A.10)

where

𝑑1 = 25(𝑑∗ − 2)(𝑑∗ + 2)

𝑑2 = 4(300𝑙4 + 936𝑙2 �̄�2 − 25�̄�4 + 318𝑙 �̄�2𝑑∗)

𝑑3 = 1200𝑙2 + 200𝑙3𝑑∗ + 2𝑙(600 + 103�̄�2)𝑑∗ + �̄�2(200 + 53(𝑑∗)2)

𝑑4 = 2

(

100 �̄�4 − 50�̄�4 +  2(600𝑙4 + 672𝑙2 �̄�2 − 50�̄�4)

+ 𝑙 �̄�2(600𝑙 + 100𝑙2𝑑∗ + (53�̄�2 − 300)𝑑∗)

)

𝑑5 = �̄�2( (1800𝑙 + 600𝑙2𝑑∗ + 103�̄�2𝑑∗) + 72 2𝑙 − 25�̄�2𝑑∗)

𝑑6 = 100 �̄�2(24 𝑙 + (2𝛼 + 𝜋) �̄�2)(cos 𝛼 − 𝑙 sin 𝛼)
∗ = 𝜋 + 2𝛼

(A.11)

The second key mechanic index is normalized stretchability, it can
e given using the following relation:

= 𝜀𝑓𝑎 ∕𝜀
𝑓
𝑚 = 𝜀𝑎∕𝜀max (A.12)

The applied strain can be determined as 𝜀𝑎 = 2𝑢𝑎∕𝑥, and aim of
he next step is to calculate the maximum strain of the LCB. According
o the LCB theory, the hoop stress can be written as

𝐴𝑟𝑐 = 𝑀𝐴𝑟𝑐𝑦∕𝑆(𝑅 − 𝑆𝑤−1 + 𝑦) +𝑁𝐴𝑟𝑐∕𝐴 (A.13)

Applying the physical equation, the peak strain 𝜀max at the inner arc
rest can be calculated by

max = 𝐸−1(−𝑀𝑜(2𝑆 −𝑤2)∕𝑆(2𝑅𝑤 −𝑤2) + 𝐹∕𝐴) (A.14)

Finally, by substituting 𝜀𝑎 and Eq. (A.14) into Eq. (A.12), we have

= (�̄�4𝑑1 +  2𝑑2 + + �̄�2𝑑3 + cos (2𝛼) 𝑑4 + sin (2𝛼) 𝑑5)∕𝑑7 (A.15)

here 𝑑1 ∼ 𝑑5 are provided in Eq. (A.11), 𝑑7 and 𝑑8 are given as follows:

7 = 100�̄�2(cos 𝛼 − 𝑙 sin 𝛼)𝑑8∕(�̄� − 2)

8 =

(

2(2 − �̄�)((6 𝑙2 + ( − 1)�̄�2) cos 𝛼 + 12 𝑙 sin 𝛼)

+( − 1)�̄�(24 𝑙 + �̄�2(𝜋 + 2𝛼))

)

(A.16)

ppendix B. Elasticity theory

For the specific geometry (i.e., 𝛼 = 𝑙 = 0), curvilinear coordinates
𝑟, 𝜗) and elasticity theory can be used to obtain the exact solution for
he serpentine ribbon. Based on the Airy stress function, function 𝛷
ust satisfy the following partial differential equation (PDE), i.e.,

𝜕2∕𝜕𝑟2 + 𝑟−1𝜕∕𝜕𝑟 + 𝑟−2𝜕2∕𝜕𝜗2)(𝜕2𝛷∕𝜕𝑟2 + 𝑟−1𝜕𝛷∕𝜕𝑟 + 𝑟−2𝜕2𝛷∕𝜕𝜗2) = 0

(B.1)

Then, let 𝛷 = 𝜑 (𝑟) sin 𝜗, Eq. (B.1) (PDE) reduces to the following
rdinary differential equation (ODE)

𝑑2∕𝑑𝑟2 + 𝑟−1𝑑∕𝑑𝑟 − 𝑟−2)(𝑑2𝜑∕𝑑𝑟2 + 𝑟−1𝑑𝜑∕𝑑𝑟 − 𝜑𝑟−2) = 0 (B.2)

ased on which we can identify the general solution with respect to
(𝑟), that is

(𝑟) = 𝑟3 + 𝑟−1 + 𝑟 +𝑟 ln 𝑟 (B.3)

here , ,  and  are undetermined constants. Therefore, the Airy
tress function can be given by

3 −1
(𝑟, 𝜗) = (𝑟 + 𝑟 + 𝑟 +𝑟 ln 𝑟) sin 𝜗 (B.4)
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In the polar coordinates, the stress field can be calculated by

𝜎𝑟 = 𝑟−1𝜕𝛷∕𝜕𝑟 + 𝑟−2𝜕2𝛷∕𝜕𝜗2

𝜎𝜗 = 𝜕2𝛷∕𝜕𝑟2

𝜏𝑟𝜗 = −(𝜕∕𝜕𝑟)𝑟−1𝜕𝛷∕𝜕𝜗

(B.5)

Combination of Eqs. (B.4) and (B.5) gives the following expressions
for achieving the stress components

𝜎𝑟 = (2𝑟 − 2𝑟−3 +𝑟−1) sin 𝜗

𝜎𝜗 = (6𝑟 + 2𝑟−3 +𝑟−1) sin 𝜗

𝑟𝜗 = −(2𝑟 − 2𝑟−3 +𝑟−1) cos 𝜗

(B.6)

According to the boundary conditions 𝜎𝑟||𝑟=𝑎,𝑏 = 𝜏𝑟𝜗||𝑟=𝑎,𝑏 = 0, we
ave

𝑎 − 2𝑎−3 +𝑎−1 = 0 and 2𝑏 − 2𝑏−3 +𝑏−1 = 0 (B.7)

Moreover, the external force 𝐹 can be expressed using the following
elationship

= ∫

𝑏

𝑎
𝜏𝑟𝜗𝑑𝑟 = (𝑏2 − 𝑎2) − (𝑏2 − 𝑎2)𝑎−2𝑏−2 + ln(𝑏∕𝑎) (B.8)

Based on Eqs. (B.7) and (B.8), the undetermined constants can be
given by

 = −𝐹∕2 ,  = 𝐹𝑎2𝑏2∕2 ,  = 𝐹 (𝑎2 + 𝑏2)∕

 = (𝑎2 − 𝑏2) + (𝑎2 + 𝑏2) ln(𝑏∕𝑎), 𝑎 = 𝑅 −𝑤∕2, 𝑏 = 𝑅 +𝑤∕2
(B.9)

Assuming that the maximum stress point is fixed, from Eqs. (B.6)
and (B.9) we obtain the peak strain

𝜀max = 𝐹 ((𝑎2 + 𝑏2)𝑎−1 + 𝑎−1𝑏2 − 3𝑎)∕𝐸 (B.10)

Next, we consider the displacement field induced by the external
applied loading. Based on the expressions of strain components in polar
coordinates, we have

𝜕𝑢∕𝜕𝑟 = (sin 𝜗∕𝐸) (2𝑟(1 − 3𝜇) − 2𝑟−3(1 + 𝜇) +𝑟−1(1 − 𝜇)) (B.11)

𝜕𝑣∕𝜕𝜗 = 𝑟𝜀𝜗 − 𝑢 (B.12)

𝛾𝑟𝜗 = 𝑟−1𝜕𝑢∕𝜕𝜗 + 𝜕𝑣∕𝜕𝑟 − 𝑣∕𝑟 (B.13)

First, we perform the indefinite integral with regard to Eq. (B.11),
where F1 is the function of 𝜗 only, this yields

𝑢 = (𝐸−1 sin 𝜗)(𝑟2(1 − 3𝜇) + 𝑟−2(1 + 𝜇) +(1 − 𝜇) ln 𝑟) + F1 (B.14)

Second, by substituting 𝜀𝜗 = 𝐸−1 (𝜎𝜗 − 𝜇𝜎𝑟
)

and Eq. (B.14) into
Eq. (B.12), we obtain the displacement 𝑣, that is

𝑣 = (𝐸−1 cos 𝜗)

(

−𝑟2 (5 + 𝜇) − 𝑟−2 (1 + 𝜇)

+  (1 − 𝜇) ln 𝑟 − (1 − 𝜇)

)

− ∫ F1𝑑𝜗 + F2 (B.15)

where F2 is the function of 𝑟 only, and 𝜇 = 𝜇′∕
(

1 − 𝜇′).
Next, according to Eqs. (B.13), (B.14) and (B.15), the unknown

functions regarding F1 (𝜗) and F2 (𝑟) satisfy the following equation

∫ F1 (𝜗)𝑑𝜗 + F′
1 (𝜗) + 𝑟F′

2 (𝑟) − F2 (𝑟) = F∗ (B.16)

where F∗ = −4𝐸−1 cos 𝜗.
Then, we let F1 (𝜗) =  sin 𝜗+ cos 𝜗+F∗𝜗∕2 and F2 (𝑟) = 𝑟, where

,  and  are the arbitrary constants, the strain components can be
expressed as follows

𝑢 =

(

−2𝐸−1𝜗 cos 𝜗 + sin 𝜗 +  cos 𝜗

+(𝐸−1 sin 𝜗)(𝑟2 (1 − 3𝜇) + 𝑟−2 (1 + 𝜇) + (1 − 𝜇) ln 𝑟)

)

𝑣 =

⎛

⎜

⎜

⎜

2𝐸−1𝜗 sin 𝜗 + (𝐸−1 cos 𝜗)

(

−𝑟2 (5 + 𝜇) − 𝑟−2 (1 + 𝜇)

+ (1 − 𝜇) ln 𝑟 − (1 − 𝜇)

)

−1

⎞

⎟

⎟

⎟

(B.17)
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⎝

+𝐸  (1 + 𝜇) cos 𝜗 + cos 𝜗 −  sin 𝜗 +𝑟
⎠

Using the boundary conditions, i.e. 𝑣|𝜗=𝜋∕2 = 𝜕𝑣∕𝜕𝑟|𝜗=𝜋∕2 = 0,
we can obtain  = 0 and  = 𝐸−1𝜋, based on which the applied
displacement 𝑢𝑎 and applied strain 𝜀𝑎 corresponding to the external
force 𝐹 can be calculated as

𝑢𝑎 = 2𝐸−1𝜋 and 𝜀𝑎 = 𝑅−1𝐸−1𝜋 (B.18)

Finally, by plugging Eqs. (B.18) and (B.10) into Eq. (B.12), the
following expression can be used to solve the normalized stretchability
 with respect to elasticity theory, that is

 = 𝑎(𝑏2 + 𝑎2)𝜋∕(𝑏 − 𝑎)(𝑏 + 𝑎)2 = 𝜋 (2 − �̄�) (4 + �̄�2)∕16�̄� (B.19)

where 𝑎 = 𝑅−𝑤∕2 and 𝑏 = 𝑅+𝑤∕2 represent the inner and outer radii
for the arbitrary curved beam, respectively.

Appendix C. Conventional beam theory

On the one hand, by taking the expansion of ln (𝑏∕𝑎) from the
elasticity theory, we have

ln (𝑏∕𝑎) = ln (1 +𝑤∕𝑎) = 𝑤∕𝑎 −𝑤2∕2𝑎2 +𝑤3∕3𝑎3 + (𝑤3) (C.1)

The applied displacement (see Eq. (B.18) in Appendix B for details)
to the three orders reads

𝑢𝑎 = 6𝑎3𝐹 𝜋∕𝐸𝑤3 (C.2)

which is the well-known deflection solution in the preliminary material
mechanics.

On the other hand, the LCB theory gives the following relationship
for achieving the pure bending stress 𝜎

𝜎 = 𝑀𝑦
(

(1 + 𝑦∕𝑅 (1 −  ))∫𝐴
𝑦2

1 + 𝑦∕𝑅 (1 −  )
𝑑𝐴

)−1
(C.3)

If we neglect the curvature effects, i.e., 𝑦∕𝑅 (1 −  ) ≪ 1, Eq. (C.3)
educes to

= 𝑀𝑦∕∫𝐴
𝑦2𝑑𝐴 = 𝑀𝑦∕𝐼 (C.4)

hich is the well-known bending stress formula, and 𝐼 represents the
o-called second-area moment of cross section in the CB theory.

For the sake of simplicity, the similar procedure (see Appendix A
or details) can be used to identify the normalized flexibility and
tretchability. Due to the limitations of the conventional beam theory,
he final expressions cannot be applicable to the serpentine ribbons
ith LCB in flexible devices.

The internal forces and moments are provided in Eqs. (A.2) and
A.3). According to the energy principle, strain energy expressions
egarding the arc and arm sections can be written by

U𝐴𝑟𝑐 = ∫

(𝜋∕2+𝛼)𝑅

0
(𝑁2

𝐴𝑟𝑐∕2𝐸𝐴 + 𝜅𝑉 2
𝐴𝑟𝑐∕2𝐺𝐴 +𝑀2

𝐴𝑟𝑐∕2𝐸𝐼)𝑑𝑠1

𝐴𝑟𝑚 = ∫

𝑙

0
(𝑁2

𝐴𝑟𝑚∕2𝐸𝐴 + 𝜅𝑉 2
𝐴𝑟𝑚∕2𝐺𝐴 +𝑀2

𝐴𝑟𝑚∕2𝐸𝐼)𝑑𝑠2

(C.5)

The boundary condition
(

𝜕U∕𝜕𝑀𝑜
)

|

|

|𝜃=0
= 0 yields the following

quation for identifying the unknown 𝑀𝑜, we have

𝑜 = 𝐹 (𝑅(2𝑙 + 𝜋𝑅 + 2𝑅𝛼 + 2𝑙 sin 𝛼) + (𝑙2 − 2𝑅2) cos 𝛼)∕(2𝑙 + 𝑅(𝜋 + 2𝛼))

(C.6)

Correspondingly, the displacements with regard to 𝛿𝐴𝑟𝑐 and 𝛿𝐴𝑟𝑚 can
e calculated using

𝛿𝐴𝑟𝑐 = ∫

(𝜋∕2+𝛼)𝑅

0

(

𝑀𝐴𝑟𝑐�̄�𝐴𝑟𝑐∕𝐸𝐼 +𝑁𝐴𝑟𝑐�̄�𝐴𝑟𝑐∕𝐸𝐴 + 𝜅𝑉𝐴𝑟𝑐𝑉𝐴𝑟𝑐∕𝐺𝐴
)

𝑑𝑠1

𝐴𝑟𝑚 = ∫

𝑙

0

(

𝑀𝐴𝑟𝑚�̄�𝐴𝑟𝑚∕𝐸𝐼 +𝑁𝐴𝑟𝑚�̄�𝐴𝑟𝑚∕𝐸𝐴 + 𝜅𝑉𝐴𝑟𝑚𝑉𝐴𝑟𝑚∕𝐺𝐴
)

𝑑𝑠2

(C.7)
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Combining Eqs. (A.1) and (C.7), the normalized flexibility from the
CB theory can be given by

 = (𝑑1 + cos (2𝛼) 𝑑2 + sin (2𝛼) 𝑑3)∕𝑑4 (C.8)

where

𝑑1 =

(

100𝑙4 − 1200 + 4𝑙2(300 + 103�̄�2) + 200𝑙3𝑑∗

+4𝑙(300 + 103�̄�2)𝑑∗ + (300 + 103�̄�2) (𝑑∗)2

)

𝑑2 = 2(50𝑙4 − 600 + 2𝑙2(53�̄�2 + 300) + 100𝑙3𝑑∗ + 𝑙(53�̄�2 − 300)𝑑∗)

𝑑3 = 2𝑙(900 + 53�̄�2) + 600𝑙2𝑑∗ + (53�̄�2 − 300)𝑑∗

𝑑4 = 100�̄�2(2𝑙 + 𝑑∗)
(

cos 𝛼 − 𝑙 sin 𝛼
)

(C.9)

Next, the second key index, i.e., the normalized stretchability of
serpentine ribbons, will be demonstrated based on Eq. (A.12). Applying
the stress expression in Eq. (C.4) and physical equation, the maximum
strain can be given by

𝜀max =
(

−𝑀𝑜𝑦∕𝐸𝐼
)

|

|

|𝜃=0,𝑦=−𝑤∕2
(C.10)

Finally, based on the applied strain 𝜀𝑎 and 𝜀max, the normalized
stretchability  in terms of three dimensionless parameters can be given
as

 = (𝑑1 + cos (2𝛼) 𝑑2 + sin (2𝛼) 𝑑3)∕𝑑5 (C.11)

where

𝑑5 = 600�̄�(cos 𝛼 − 𝑙 sin 𝛼)(2𝑙 + 𝑑∗ + (𝑙2 − 2) cos 𝛼 + 2𝑙 sin 𝛼) (C.12)

Appendix D. Important approximate solutions

To guide the multifunctional design of the ultrastretchable serpen-
tine ribbon in flexible devices, we provide some useful analytical results
with respect to the normalized flexibility and normalized stretchability:

Case I: The serpentine ribbon without the arc angle.

⎧

⎪

⎨

⎪

⎩

 ≈ 103𝜋∕100 + 78𝑙∕25 + 𝑑1∕
(

2𝑙 + 𝜋
)

�̄�2

𝑑1 = 24𝑙2 + 2𝑙4 + 6𝑙𝜋 + 4𝑙3𝜋 + 3(𝜋2 − 8)
(D.1)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

 ≈ (100𝑑2 +
(

2𝑙 + 𝜋
) (

312𝑙 + 103𝜋
)

�̄�2)∕𝑑3

𝑑2 = 24𝑙2 + 2𝑙4 + 6𝑙𝜋 + 4𝑙3𝜋 + 3(𝜋2 − 8)

𝑑3 = 600
(

𝑙
(

2 + 𝑙
)

+ 𝜋 − 2
)

�̄�

(D.2)

Case II: The serpentine ribbon without the arm section.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

 ≈ (𝑑4 sec 𝛼 + 𝑑5)∕100�̄�2

𝑑4 = (300 + 103�̄�2) (𝜋 + 2𝛼)

𝑑5 = 2(53�̄�2 − 300) sin 𝛼 − 2400 (𝜋 + 2𝛼)−1 cos 𝛼

(D.3)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

 ≈ ((𝜋 + 2𝛼) 𝑑6 − 2400 cos 𝛼)∕𝑑7

𝑑6 = (300 + 103�̄�2) (𝜋 + 2𝛼) sec 𝛼 + 2(53�̄�2 − 300) sin 𝛼

𝑑7 = 600�̄� (𝜋 + 2𝛼 − 2 cos 𝛼)

(D.4)

Case III: The serpentine ribbon without the arc angle and arm
section.

 ≈ 103𝜋∕100 + 3(𝜋2 − 8)∕𝜋�̄�2 (D.5)

 ≈ (𝜋2(300 + 103�̄�2) − 2400)∕600 (𝜋 − 2) �̄� (D.6)

Appendix E. Experimental data
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See Fig. E.1.
Fig. E.1. Force–displacement curves for various serpentine ribbons corresponding to
Fig. 3a.
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