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This paper lays stress on the normalized stiffness and stretchability of planar ribbon kirigami. A dimen-
sionless analytical model is proposed based on plane strain beam theory, in which the large curvature
curved beam (LCCB) model is considered. The tensile experiments and simulations are performed and
compared to validate the analytical model based on four dimensionless parameters. It is found that not
all kirigami-based design is conducive to the enhancement of normalized stretchability. Remarkable long
arm effect can enhance the normalized stretchability or reduce the normalized stiffness by several orders
of magnitude. Finally, an optimization method is used to obtain the maximum normalized stretchability.
The results in this paper can be used to guide the kirigami design in future application.

© 2019 Published by Elsevier Ltd.

1. Introduction

Kirigami, as a unique art form, primarily points to excise the
paper at specific locations. Recently, kirigami has gained consider-
able anticipation among scientists as a superior design paradigm in
various engineering fields. In particular, krigami-engineered elas-
ticity (Callens and Zadpoor, 2017) is proposed as an ideal ap-
proach towards stretchable electronics (Guan et al., 2018; Shyu
et al,, 2015), diffraction gratings (Xu et al., 2016), force sensors
(Blees et al., 2015), solar trackers (Lamoureux et al., 2015), soft
deployable reflectors (Wang et al., 2017), sun-shading (Tang et al.,
2017), and triboelectric generators (Wu et al., 2016).

Meanwhile, several design strategies have been developed
to research the krigami-engineered elasticity. For the first de-
sign strategy, the thin sheets can be regularly excised using
the pattern of straight cut, which the mechanism involving the
post-buckling (Rafsanjani and Bertoldi, 2017) of kirigami mo-
tifs can guarantee the krigami-engineered elasticity. Especially,
Blees et al. (2015) opened a new era towards one-atom-thick ma-
terial kirigami. Isobe and Okumura (2016) carried out scaling law
derivations and experiments to unveil the transition mode be-
tween in-plane and out-of-plane responses of kirigami. More re-
cently, Yang et al. (2018) performed theory model construction
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using energy approach and a set of experimental and numerical
studies on multistable kirigami. Upon uniaxial tensile loading, the
thin kirigami structure can buckle out-of-plane as lateral bending
consumes less energy than in-plane bending, allowing it undergo-
ing ultimate tensile strain and achieving in situ tunable mechan-
ical properties. The second strategy is combining the first strat-
egy of straight cuts to create fractal design in 2D sheet, but the
kirigami structure has a huge thickness to provide in-plane defor-
mation of units around the hinges, which the lateral buckling is
suppressed. Cho and coworkers demonstrated the substantial in-
creasing of stretchability could be obtained by an enhanced level
of hierarchy (Cho et al., 2014; Tang et al., 2015). The design prin-
ciple with kirigami-based expandability of > 800% greatly expands
the design space for pluripotent materials, and leads to a manage-
able set of design paradigms (Shan et al.,, 2015; Tang and Yin, 2017)
especially for stretchability modifications of brittle materials.

In addition to the abovementioned design strategies, variable
geometrical design is crucial to create new opportunities for mul-
tipotent materials and structures (Dias et al., 2017; Holmes, 2019).
The promising design strategy concerning geometry-dependent
ribbon kirigami in this paper is inspired by the pattern of curve
cut from Chinese paper art. Similar to the second design strat-
egy involving the in-plane mechanical responses, the huge thick-
ness of ribbon kirigami can suppress its lateral buckling under the
uniaxial tension (Hwang and Bartlett, 2018; Jang et al., 2017; Xu
et al., 2016). However, the research into mechanical performance
of geometry-dependent planar ribbon krigami is scarce, and this
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Nomenclature

R The arc radius

o The arc angle

w The ribbon width

0] The ribbon width/radius ratio

l The arm length

I The arm length/radius ratio

m The connection length

m The connection length/radius ratio

L The length of the unit cell

Ly Two outer arc crest length between two hinge joints
I The dimensionless form of L4

L, The half distance between two adjacent unit cells
I, The dimensionless form of L,

L3 The distance of in-plane breadth

Is The dimensionless form of L3

kerr  The normalized stiffness

I3 The normalized stretchability

Mg The balancing moment

F The end force

F The end force of a straight beam

Uapp The applied displacement

U app The applied displacement of a straight beam
N The internal normal force

Vv The internal shear force
M The internal moment
N Internal normal force for F=1
1% Internal shear force for F=1
M Internal moment for F=1
U The elastic deformation energy
A The area of cross section
E The plane strain modulus
E Young's modulus
G Shear modulus

I The Poisson’s ratio

1 The second-area moment of cross section

S The static moment of the cross section on neutral
axis

K The correction coefficient of strain energy

8£pp The elastic stretchability

s,fmt The intrinsic failure strain

Eapp The applied strain

Emax The maximum tensile strain

O are The hoop stress in curve beam

0 The angular variable

S1 The arc-length variable

Sy The linear variable

t The scaling factor for in-plane breadth

r The curvature radius of the neutral axis

is especially true for the cases of stiffness and stretchability. And
the geometry effects including or excluding geometry constraints
on the key mechanical responses of ribbon kirigami structures are
rarely investigated as well.

Here, we report the geometry-dependent normalized stiffness
and stretchability of ribbon kirigami with large thickness. The lat-
eral buckling is suppressed. The plane strain beam and large cur-
vature curved beam (LCCB) model are considered. Timoshenko and
Goodier (1970) compared the elasticity theory with the LCCB the-
ory and beam theory in the case of pure bending of the beam
with different width/radius ratio (rectangular cross-section). They
found that LCCB solution was in good agreement with elastic-
ity solution. The relative error of pure bending normal stress be-

tween beam theory and LCCB solution was always smaller than
7% for width/radius ratio < 0.2. While, due to their large margin
of relative error when width/radius ratio > 0.2, it was unsuitable
to evaluate the large curvature curved beam using beam theory.
Therefore, to design, evaluate and develop ribbon-kirigami-based
stretchable devices, it is necessary and significant to provide a the-
oretical framework based on the appropriate analytical model.

This paper is organized as follows. Section 2 establishes ana-
lytical model of normalized stiffness and normalized stretchabil-
ity using Castigliano’s theorem and Moore Integral method. The
corresponding derivations based on elasticity theory and beam
theory are provided. The numerical and experimental methods
are summarized in Section 3. Section 4 is dedicated to the com-
parison of analytical solution with experiments and simulations.
Section 5 presents the designing of maximum normalized stretch-
ability under geometry constraints. Finally, Section 6 gives the con-
cluding remarks.

2. Analytical model

The kirigami structure we explored in this research is estab-
lished by considering one-directional periodic boundary condition.
For the sake of depicting our design paradigm, a typical kirigami
unit cell is illustrated in Fig. 1a. The first key parameter to char-
acterize the kirigami structure is arm length (). The connection
length (m) is then designated to adjust the distances between
two adjacent unit cells. In this model, we consider a curved sec-
tion (arc) between two arms, which the arcs can be described by
the radius (R) and arc angle («). Thus, the length L of a kirigami
unit cell can be calculated by L=2(Rcos o —Isin @ +m). And the
kirigami structure can become a straight ribbon if @ = —m/2.

Through dimensional analysis method, four independent di-
mensionless parameters can vigorously define the proposed
kirigami structure, the width of ribbon/radius @ = w/R, the length
of connection/radius i = m/R, the length of arm/radius I = I/R and
arc angle «. Thereby, design variables possess four degrees of free-
dom in the design space of kirigami structures as illustrated in
Fig. 1c, adapted from Yang et al. (2016). A series of kirigami struc-
tures can be described by different combinations of these four pa-
rameters, which the representative geometries are systematically
summarized in Fig. 1c.

A uniaxial force (F) in the periodicity direction is applied at the
end of connection. And it is customary to use the symmetry as the
simplified measures in material mechanics. As seen in Fig. 1b, the
connection section is firstly separated out and the remaining one
quarter of the kirigami structure can be designated as a simplified
analytical model. Then this process is performed by clamping its
left end, the right end is considered free and subjected to a bal-
ancing force F/2 and a balancing moment M.

As the current research intends to provide insights into
geometry-dependent mechanical responses involving large
width/radius ratio. Closed-form analytical results for the key
mechanics of kirigami structures are derived by considering the
plane strain beam theory and large curvature curved beam (LCCB)
model, as detailed in Appendix A.

In particular, normalized stiffness is the first important me-
chanical behavior, and it can be defined according to Eq. (1):

/
- F‘uapp

kepr = & (1)

Uapp

where ugpp is the applied displacement for F in the connection
section, F' and u/qyp are end force and applied displacement of a
straight beam when o = —m/2, respectively. The second key me-
chanics index is normalized stretchability, it is determined using a
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Fig. 1. (a) lllustration of a typical kirigami unit cell with geometry parameters and boundary conditions labeled. (b) Schematic of simplified analytical model for a kirigami
unit cell and direction of internal forces labeled. (c) Design space for ribbon kirigami defined by four independent dimensionless parameters (@, I, m and «). (For interpre-
tation of the references to color in text, the reader is referred to the web version of this article.)

continued equality:

f
_ & &
g Eapp _ Eapp (2)
851‘” Emax

where 8£pp and 8,{10[ are respectively the elastic stretchability and
intrinsic failure strain of material, £qpp and emqx represent the ap-
plied strain and the maximum tensile strain of kirigami structure,
separately. The failure criterion we used here is &max = &5, For
brittle materials, 8,{w[ signifies corresponding rupture strain.

As the simplified analytical model in Fig. 1b is a statically inde-
terminate problem, the unknown Mj should be determined first. In

Appendix A, utilizing the Castigliano’s theorem gives the following
equation for solving Mg:

F[(—2AIR + AI%S + 2IS) cosa + AR(Izr + 2IS + 2la + 2ISsin) |
0= 2A[21S + I(7T + 2a)]

(3)

It is noteworthy that the advantage of using kirigami structure
with large thickness/width ratios is that the lateral buckling can be
suppressed. The effective approach adopted in the current research
uses unit thickness models based on the two-dimensional plane
strain. Expression of the relevant parameters from Eq. (3) can be
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given in terms of unit thickness, i.e.

w? w
A=w, [=-—, S:a)(R) (4)
12 e

where A is the area of cross section, I is the second-area moment
of cross section, S is the static moment of the cross section on
neutral axis. With the function of My in hand, the Moore Inte-
gral method is then adopted in Appendix A to determine the nor-
malized stiffness and stretchability of kirigami structure. Based on
Eq. (1), the normalized stiffness containing the geometry parame-
ters (@, I, m and «) is given using the following relationship:

80J@? (24)1 + (1 +20)@?)Zy

Experiment: Each kirigami structure is manufactured using 3D-
printed Somos® Imagine 8000 resin material. The tensile experi-
ment using INSTRON 5965, US is conducted to validate the analyt-
ical model. Concretely speaking, the specimen is slowly and care-
fully clamped with antiskid, and then the strain is measured as
precisely as possible with the high-precision non-contacting video
extensometer (the measurement accuracy (axial and transverse) is
+2.5um). A strain ratio of 0.001 s~! is used which produced the
exact stress-strain curve. According to Eq. (2), one has to separately
check the strain in a curved beam and in a straight beam. The

(5)

I}eff =

48021 + 480J120? + 18722122 + 1920/2Im? + 480Jim &? + 696217 &>

+80J17 % + 960Jlac? + 13922la@? + 160]Pa@? — 400* + 80J* — 40/2*
+98]Ir @* + 80Jmm * + 107720* + 29w 2* + 196]lad? + 160Jmad* + 40w
+116JTa@? + 4002 w* + 116Ja2w* + 2 cos 2aZ, + @2 sin 2aZ3

The normalized stretchability based on Eq. (2) can be related to

geometry parameters (@, [, m and «) by

480/21* + 480J1@? + 1872212@?* + 1920/2Im? + 480Ji &? + 696)217 ?
+80J17 % + 960Jlc? + 13922la@? + 160]Pa@? — 400* + 80j* — 40/2*
+98JIm@* + 80Jmm * + 1077 2* + 29w 2* + 196]lad? + 160Jmad* + 40w a

+116JTa@? + 4002 * + 116Ja2w* + 2 cos 2aZ, + @2 sin 2aZ3

L[ (1 -] (24)1 + (70 +22)@?) — Zycosa — Zs sina |

where 71, Z,, Z3, Z4, Zs and J are provided in Appendix A (see Eq.
(A18) and Eq. (A27)).

To provide a more useful form of analytical result to an experi-
mentalist in designing kirigami-based devices, the special case for
o =0 is given as follows, and the normalized stretchability can be
approximately calculated as

(—24 + 372 + 2mm @2 + 4lMm@? + 6l + 241 + 47 + 214)

E(a=0)~ —
( ) 6 (11 + 1) (1 — 2+ 21 + I2)

(7)

So far, key mechanics indexes towards normalized stiffness
and stretchability have been provided. Preliminary inspection of
Eq. (5) is performed, and we find that the relations between nor-
malized stiffness and @, m, lare monotonic, separately. However, it
is difficult to determine the effect of & on normalized stiffness. Be-
cause of complexity, we cannot facilely find the relation between
normalized stretchability and four independent dimensionless pa-
rameters in Eq. (6). And thus, further analysis should be suitably
carried out, as we provided in Section 4.

Additionally, to provide a full understanding of the LCCB model
on stretchability of kirigami structures, the analytical model is
compared with the series-expansion-term-dependent elasticity so-
lution derived in Appendix B and degenerated LCCB solution (beam
theory) derived in Appendix C. According to the linear elasticity
and small deformation assumption, this process is also performed
in Section 4.

3. Simulation and experiment methods

Finite Element Method (FEM): Simulation analysis is performed
with the use of plane strain FEM in the ABAQUS code. Our ma-
terial properties are similar to ones used in other studies of the
stretchability of silicon (Lu and Yang, 2015). Young’s modulus is
E =130GPa, Poisson ratio is fi =0.27. The size of elements is care-
fully determined by using convergence test. Thus, all FEM models
have the same size level of 0.1w. Nominal strain of 0.02 is exter-
nally applied to the whole models and the corresponding coupling
point should be correctly selected.

(6)

elastic stretchability is determined by using a number of kirigami
structures, while the corresponding straight specimen (a=-m/2)
is carefully measured for intrinsic failure strain, in order to get
exact results of normalized stretchability. Finally, the stress-stain
curve, elastic stretchability and intrinsic failure strain of kirigami
structures with different geometries can be experimentally ob-
tained to determine their normalized stretchability. If the obtained
experimental data are found in accordance with the theory and
FEM results, our LCCB theory modeling can provide insights into
the rational design and practice of planar ribbon kirigami.

4. Results and discussion
4.1. Effects of geometry parameters on the normalized stiffness

Figs. 2 and 3 provide the comparison of analytical solutions and
FEM results for plane strain model we proposed. Fig. 2a-f reveal
the geometry-dependent normalized stiffness using the reciprocal
of Eq. (5). As the normalized stiffness mentioned here involves
the contributions of curved beam and straight beam (o =-m/2).
Therefore, if we designate the same applied displacement or end
force, the Eq. (5) can be simplified as F/F' or u/qpp/uapp, based on
which considerable FEM computations can be avoided. As illus-
trated from Fig. 2a to f, analytical solution according to Eq. (5) is
plotted as the solid lines, and FEM results are described by the
filled rectangles. Design space for kirigami structure defined by
four independent dimensionless parameters and representative ge-
ometries are displayed in the insets. The first design variable (in-
dependent variable) is represented by axis that marked with red
color, while the second design variable is represented by green co-
ordinate axis (Yellow marked coordinate axis represents the third
design variable see Fig. 2g and h). Blue marked coordinate axis sig-
nifies invariant that the variable is fixed in the design space. Over
the whole domain, the FEM results are in excellent agreement with
the analytical solutions, which can be attributed to the appropriate
derivation involving the consideration of LCCB, application of Cas-
tigliano’s theorem, and execution of Moore Integral method. We
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firstly investigate the effect of @ on normalized stiffness, which is
the burning question as mentioned above. Obviously, Fig. 2e and f
show that with increasing of the first design variable o the nor-
malized stiffness is monotonic increasing. However, two important
observations should be reported: first, when « is closed to— /2,
it causes a drastic drop of l/l_ceff. In particular, if the kirigami
structure devolves into a straight beam, a direct consequence of
1/kesy =1 can be obtained according to Eq. (1). Second, the recip-
rocal of normalized stiffness 1/I_<ef f is increasing due to « increas-
ing, till somewhere from O to 1, the solid line converges to the cor-
responding asymptotic line, indicating that the kirigami structures
are geometry-constrained and non-overlapped. Geometrically, if ®,
m and | have been fixed in kirigami structures, the penetration of
internal material, because of the variation of arc angle «, is not
allowed. To give a further explanation of geometry constraint, we
will systematically discuss it in Section 5.

Comparing Fig. 2a to f, while the effect patterns of @, m, o and
I on normalized stiffness, as outlined in Section 2, are all mono-
tonic, for instance, the smaller [, the larger ®, the smaller «, and
the larger m will generate larger l_ceff. Reduction of normalized
stiffness can be attained more than several orders of magnitude
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by simple kirigami design instead of straight ribbon. For example,
in the case of ® =0.2, =3 and m =0 (see Fig. 2f), the normal-
ized stiffness of kirigami structure is decreased by 366.53 times
as compared with that of the straight beam when « is increas-
ing from -7m /18 to m/12. These constitute dramatic evidences of
the ultra-low stiffness for kirigami ribbons in terms of graphene
kirigami (Qi et al., 2014), MoS, kirigami (Hanakata et al., 2016)
and paper kirigami (Hua et al., 2017) in the stage of initial rigid
response (Isobe and Okumura, 2016). Depending on the number of
invariants, the reciprocal of normalized stiffness 1/k.s; in relation
to two invariants has been investigated as indicated in Fig. 2a-f. By
appropriately designating the design variables, Fig. 2g and h pro-
vide insights into the normalized stiffness k.y; of kirigami struc-
ture with respect to one invariant. The color bar represents the
value of k,s; according to the combination from the first to third
design variable. The blank space represents the overlapping geom-
etry for kirigami structure. The red dots as listed in Fig. 2g and
h represent the partial geometries with different design variables,
which are also prepared in the FEM simulations. The most com-
prehensive understanding stemmed from Fig. 2g and h is that 3D
graphs give us not only the identical results to graphs in Fig. 2a to
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Fig. 2. (a) The reciprocal of normalized stiffness versus the first design variable & when the second design variable is I and invariants are e =0, m=0. (b) The reciprocal
of normalized stiffness versus the first design variable @ when the second design variable is m and invariants are o =0, [=5. (c) The reciprocal of normalized stiffness as
a function of the first design variable | when the second design variable is @ and invariants are o =0, m=0. (d) The reciprocal of normalized stiffness as a function of the
first design variable I when the second design variable is 1 and invariants are a =0, @=0.5. (e) The reciprocal of normalized stiffness versus the first design variable o
when the second design variable is I and invariants are m=0, @ =0.2. (f) The reciprocal of normalized stiffness versus the first design variable « when the second design
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f but also the broader landscapes and scopes of four independent
dimensionless parameters.

4.2. Effects of geometry parameters on the normalized stretchability

Fig. 3 reveals the effects of geometric parameters on normalized
stretchability by using the reciprocal of Eq. (6). Generally speak-
ing, the FEM results show excellent agreement with the analyt-
ical solution according to Eq. (6), which the analytical and FEM
solutions are separately plotted as the solid lines and filled rect-
angles. Fig. 3a and b provide typical evolutions for the increas-
ing of @: the effect of the first design variables are monotonic.
But the corresponding second design variables are obviously dif-
ferent, which are respectively related to the arm length/radius |
and length/radius m. With increasing of @ the normalized stretch-
ability & decreases, indicating that the large @, in principle, is al-
ways adverse to the in-plane rigid rotation of kirigami structures.
In other words, the pure bending strain accounts for a large pro-
portion as compared with that of the small ribbon width/radius
ratio @. However, for the potential applications, such as kirigami
structures for integrated solar tracking (Lamoureux et al., 2015),
the minimum width/radius ratio @ will restrict the device perfor-
mance (such as GaAs kirigami tracker). Therefore, there is an ur-
gent need to design a very stretchable kirigami structure under
certain geometric constraints. Toward this end, by considering the
non-overlapping conditions, the most stretchable ribbon kirigami
with a specific in-plane breadth is designed in Section 5. It is ap-
parent that £ will increase if [ increases as indicated in Fig. 3a
or m decreases in Fig. 3b for given . And for all cases listed in
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Continued

Fig. 3a and b, stretchability enhancement of kirigami structure due
to [ is significant. For example, in the case of « =0, ®=0.4 and
m=0, the normalized stretchability ¢ is increased by a factor of 18
when [ increases from 0 to 5, which signifies the attractive abil-
ity for kirigami design presents a desirable technology in reduc-
ing the intrinsic tensile strain. Fig. 3c and d give a further inves-
tigation of the arm length/radius [, which the second design vari-
ables are ribbon width/radius @ and connection length/radius 1,
respectively. As [ increases, a sharp drop of the reciprocal of nor-
malized stretchability 1/ can be observed as evident in Fig. 3¢
and d. Therefore, this gives rise to so-called long arm effect of
kirigami structure. The contribution of long arm effect on stretcha-
bility enhancement of ribbon kirigami is in accordance with previ-
ous experiment and simulation results, such as those for kirigami
nanocomposites as diffraction gratings reported by Xu et al. (2016),
for kirigami-based force sensors reported by Blees et al. (2015), for
stretchable kirigami polymer with high electrical conductivity re-
ported by Guan et al. (2018), and for conducting kirigami compos-
ites as stretchable electrodes reported by Shyu et al. (2015). The
effect of the first design variable @ on 1/¢ is visible in Fig. 3e and
f, and the second design variables are separately designated as [
and m. In comparison with the monotonicity of « in Figs. 2 and 3,
we find that the curves in Fig. 3e are not all monotonic. For small
arm length/radius such as [ =0, Fig. 3e display the evolution for the
o increasing from —1.5: first a linear increase of 1/¢ followed by
a drop, after which the reciprocal of normalized stretchability 1/&
varies in a lesser extent. But the curves become monotonic (due to
the long arm effect) when [ is large, which in-plane enhanced rigid
rotation due to large I suppress the in-plane bending effect. Strik-



242 Y. Wang, C. Wang and H. Tan/International Journal of Solids and Structures 182-183 (2020) 236-253

() _ (b)
=0,m=0
12 — 02 .
LCCB Theory (Eq.6) = LCCB Theory (Eq.6)
1 ® FEM = FEM

Design Space of Stretchability Design Space of Stretchability
@ 0.15 &

a=0,1=5

W 5
=01 ,
¥ s
0.05 .
//
0 R L .
0 0.2 0.4 0.6 0.8 1
@
© _ @ a=0,®=0.5
16 a=0,m=0 14 . . — . . .
1.4k LCCB Theory (Eq.6) LCCB Theory (Eq.6)
. = FEM 12 = ppMm
1.2 v T _
Design Space of §Inlchahlllly Design Space of Elrel(‘llalll.llly
1 t @

1/z

25 ®=02,m=0 25 :

LCCB Theory (Eq.G)  Desien spaceof Srstchabilty

@0=02,1=3

LCCB Theory (Eq.6) Dol Spaceof trechabily
=  FEM
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version of this article.)

ingly, in some cases the reciprocal of normalized stretchability will
exceed 1, this suggests that the maximum tensile strain €p;qx may
exceed the applied strain eqpp according to Fig. 3e, f and Eq. (2).
Similar phenomena are also observed in Fig. 3c and d. These ob-
servations directly demonstrate that ribbon kirigami design by ex-
perience should be carefully carried out, and not all kirigami motifs
are helpful to enhance the stretchability.

Fig. 3g and h reveal the effect of one invariant on the recipro-
cal of normalized stretchability 1/¢ according to Eq. (6), which this
process is in line with the investigation of normalized stiffness in
Fig. 2g and h. Red dots represent the cases where simulations are
available. But the value of the color bar represents the magnitude
of 1/¢€ instead of &, and we have to plot it in such a form because
of more friendly landscapes. The blank space, as reported above,
represents the inaccessible geometries for ribbon kirigami, which
can be obviously illustrated in Fig. 3g. Note that the arm length of
ribbon kirigami can take a large value range when o =0. To give
a full understanding of the long arm effect, we compare and in-
vestigate some extreme cases based on elasticity theory, LCCB the-
ory and beam theory in Fig. 4. It is seen from Fig. 3h that the ef-
fect of & is nonmonotonic according to the color distribution, but
it can bring substantial increases in the landscape of 1/&. There
is, in fact, much evidence to indicate that the previous design of
kirigami structure by rule of thumb is not always able to provide a
reliable guideline in enhancing the stretchability. Thus, the arc an-
gle o should be precisely controlled in kirigami design. Moreover,
for small «, large [ is still a great motivator to decrease the recip-
rocal of normalized stretchability 1/¢ based on in-plane rigid rota-
tion. Specifically, the significant reduction can be found in Fig. 3h
where is represented by the counterintuitive yellow zone.

4.3. Comparison of different theoretical solutions

A combination of two dimensional plane strain elasticity the-
ory, LCCB theory and beam theory is employed to analyze the nor-
malized stiffness and stretchability. Based on boundary value con-
dition and Airy’s stress function in a series form, we use Fourier
series expansion technology to obtain the elasticity solution. Here,
the elasticity solution of normalized stretchability with specific ge-
ometry, as derived in Appendix B, is given, as follows:

2%(1—u>z—£&(1+u>—§[

n=2

where Ag/F, By/F, An|F, Bn|E, Cy/F and Dy/F are provided in Ap-
pendix B (see Eq. (B12)). LCCB solution of normalized stretchabil-
ity can be calculated using Eq. (6), based on which the degener-
ated LCCB solution, that is, beam theory solution can be derived in
Appendix C, and can be given by

+4lm@? + (—12+ 1212 + P — 6I(7r + 20) + 2P (7 +2a)) cos 2ax

—12 4+ 122 + 14 + 12[ + 2B + 372 + 24l + 4B« + 120 + 1202
+3(6] — 7w — 20 + 22 (7 + 2a0)) sin 2 + 27 @2 + A @?

(&)gean = 6 (1M + cosar — l_sina)(Zl_+ T2+ (-2+ 1_2) cosa + Zl_sinoz)

(9)

Fig. 4 contains the comparison of three theory solutions for nor-
malized stretchability of specific kirigami structures according to
Egs. (6), (8) and (9). Generally speaking, results of LCCB theory
solution (and FEM) show good agreement with the elasticity the-
ory solution with high order series expansion in Fig. 4a, such as
Nmax =20 according to Eq. (8), and both of them can accurately
offer analytical solutions for a large range of ribbon width/radius
@. But the results of beam theory are not perfectly as precise,
which is expected as the over-simplification of pure bending ef-
fect is not suitable to describe the stretchability of LCCB. For all
cases in Fig. 4a, two important facts should be given: firstly, elas-
ticity solution is series-expansion-term-dependent. With increas-
ing of npue the relative error between elasticity theory solution
and LCCB theory solution decreases. For example, elasticity solu-
tion curves can gradually converge to certain exact solution from
Nmax =2 t0 Nmax =20. It will lead to an excessively large compu-
tations when we designate npgq> 21, while the obtained results
have a negligible error. Secondly, due to the nature of beam the-
ory it is not thought to provide a reliable estimate of stretchabil-
ity of kirigami structure with LCCB. According to Eq. (A22) in Ap-
pendix A, y/r can be omitted only when y << r (i.e. slender beam)
and the denominator of Eq. (A22) can degenerate into the second-
area moment of cross section I. However, for the cases studied in
the current paper regarding LCCB, y and r are comparable, thus it
is difficult to predict the exact results of kirigami structures us-
ing beam theory. For example, in the case of ribbon width/radius
@=0.8 as we can see from Fig. 4a, the relative error between elas-
ticity theory solution and beam theory solution would be as much

(1+ p)nb™ "8 4 (=2 +n+2p +np)b™1 B
~(1+p)nb -1l —

24+n—2u+n b—”+”’"}
( 1% W) RF (8)

o0
A B
2P~ t X

n=2

(é)Elasticity = <

(=1+mna=24 + (1 +n)(2 +n)a" 2 cos 1T
+(1+mna-2"% + (1 -n)2-n)a "2 2
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as 20.32%, while the LCCB theory solution compares favorably with
the elasticity theory solution. Also, this remarkable difference can
be found in Fig. 4b, and we suggest that careful analytical model-
ing should be established to evaluate the key mechanical behav-
iors of ribbon kirigami with LCCB. While the comparison produces
a reliable and precise assessment, continuing researches will inves-
tigate a suite of assumptive strain extreme points and series con-
vergence tests. It can also be observed from the Fig. 4b that long
arm effect is powerful to enhance the normalized stretchability of
kirigami structure, which could be nearly four orders of magnitude
more stretchability enhancement. In other words, long arm effect
can substantiality reduce the maximum tensile strain of kirigami
structure. This property could be exploited for applications, such
as stretchability modifications of intrinsic brittle materials under
harsh environments, which require a trade-off between physical
characteristics and intrinsic material properties.

4.4. Experimental validation

Fig. 5a-c provide comparison of theoretical solutions obtained
from Eq. (6) and experimental results corresponding to different
geometries. For all 3D-printed kirigami structures in Fig. 5, the
large thickness/width ratio is designed to provide in-plane defor-
mation and suppress the lateral buckling. The width of ribbon is
1mm and the thickness of ribbon kirigami is 10 mm. Based on the
nature of design space, Fig. 5a plots the effect of the first design
variable [ on the reciprocal of normalized stretchability 1/¢, while

the corresponding three invariants are ¢« =0, m=0.2 and @ =0.2,
respectively. In particular, for the case of « =0, m=0.2, ®=0.2 and
[=2, Fig. 5d shows the experimental stress-strain curve and the
optical images of structural shapes at different strain levels. The
strain field distribution in Fig. 5d obviously shows that the maxi-
mum strain in ribbon kirigami occurs at the inner arc crest, which
is always the break location of 3D printed ribbon kirigami under
uniaxial tension. Fig. 5b and c present the results of 1/¢ from ana-
lytical solution, as a function of the first design variables «, and the
invariants are separately designated as [=2.5, m=0.2, ®=0.2 and
[=0, m=1, @=0.2. Over the whole domain, we find the recipro-
cal of normalized stretchability for experimental specimens (black
rectangle, Fig. 5a-c inset), is in surprisingly good agreement with
our theoretical prediction, confirming that the analytical model in
current research by considering LCCB model is highly effective to
provide insights into the rational design and practice of planar rib-
bon kirigami. However, there is always room for improvement. Due
to non-dimensionalization nature, expressions with regard to the
key mechanics indexes should be scale-scalable. To trigger further
investigation and validate the scalability of analytical modeling,
molecular dynamics (MD) simulation experiments for low dimen-
sional silicon kirigami are performed in Appendix D. It is seen from
Fig. D1 that the results from MD simulation is essentially identi-
cal to the analytical solution, but much work should be devoted to
accuracy enhancement of analytical modeling for low dimensional
silicon kirigami. The authors hope to answer this question in the
near future.
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5. Optimization

This paper has highlighted three facts associated with impera-
tive optimization of kirigami structures under geometry constraint
conditions: firstly, the analytical results of normalized stiffness and
normalized stretchability indicate that geometry-constrained and
non-overlapped conditions are intrinsic according to Egs. (5) and
(6). And not all kirigami shapes are acceptable within the scope of
our present study. Secondly, the object of current research is mod-
eled by considering one-directional periodic boundary condition.
Thus the non-overlapped condition should be applied between the
adjacent unit cells. Thirdly, while the larger [ and the smaller @
will generate larger normalized stretchability, sometimes it is im-
possible to achieve the maximum length or the minimum width
of ribbon kirigami because of technical bottlenecks (such as reso-
lution restriction of photolithography Widlund et al., 2014). More-
over, novel physical devices in relation to kirigami configurations,
as mentioned above, also need geometry constraints to maintain
their device performance. As a consequence of requirement for

theory and application, based on the aforementioned three facts
this section aims to achieve the maximum normalized stretchabil-
ity under three geometry constraints.

By revisiting the geometry parameters in Fig. 1a and b, we find
that three key parameters with regard to geometry constraints are
not defined (L, L, and L3). Here we start by describing the first ge-
ometry parameter: the distance of the outer arc crest between two
hinge joints L;. Obviously, the magnitude of L; is associated with
the first non-overlapped condition. It is apparent that L; should be
nonnegative. By applying the similar non-dimensionalization pro-
cess, L; can be expressed as L;/R. Then, according to the non-
negativity condition, the definition of I can be given in terms of
the three independent dimensionless parameters (®, | and «), as
follows:

Li=1- %—I:(l — %) 1- cosa)—i—l_sincx—i—%(l—cosa)] >0

(10)
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L, represents the relationships between two adjacent unit cells,
which is in relation to the second non-overlapped condition. If we
define L, as L, /R, the dimensionless L, can be related to four inde-

pendent dimensionless parameters (@, I, m and o) by:

I:2=ﬁ1—|:l_sina+(1—cosa)+c;}20 (11)

Based on Egs. (10) and (11), the critical values of o and m with
respect to geometry non-overlap can be determined using the fol-

lowing equations:
20+ /42 + 4 — 2

Omax = 2 arctan 716 (12)
_ - @
mm,-,,zlsma—l—(l—cosoz)—s—j (13)

Then next step is to determine the third condition, that is, ge-
ometry constraint condition. According to the third fact, we need
to designate a specific in-plane breadth to generate the kirigami
motifs. Applying the normalization method, the dimensionless in-
plane breadth I3 = L3/R can be expressed by

[3=2<l+620+sina+l_cosa>=td) (14)

where t is the scaling factor. If we designate t=15, it represents
that the in-plane breadth of ribbon kirigami Ls is 15 times larger
than the ribbon width w. Then combining the Eqs. (12), (13),
(14) and (6), the optimization problem in regard to the maximum
normalized stretchability under geometry constraints can be solved
by using the “number shape union” technology. Concretely speak-
ing, Eqs. (12) and (13) should be firstly substituted into Eq. (6),
and we can obtain the normalized stretchability € as the function
of amax and My, by

& = g(0tmax, Mmin) (15)

where the reciprocal of Eq. (15) is plotted in Fig. 6a. Both @ and [
are designated as the first design variables and defined in the de-
sign space of kirigami structures. Similarly, the color bar represents
the value of 1/&. Then with the aid of Eq. (14), (&,]) in the case of
the minimum value (1/€)i, (i.e. (§)max) can be determined and
represented by the black dots, as we can see in Fig. 6a. This process
can be realized by utilizing the commercial software MATLAB or
open-source software Anaconda (Python). With the obtained (@, I)
in hand, we can shift the results represented by black dots into the

functional drawing districts of Eq. (12) and Eq. (13), and the color

bars in Fig. 6b and c separately represent the value of g and
Mumin- Thus, the corresponding o and m can be determined accord-
ing to Fig. 6b and Fig. 6¢, respectively. By collecting the relevant
parameters ¢ and (&, I, «, 1), the maximum normalized stretcha-
bility under geometry constraints can be finally achieved. We in-
vestigate the cases when tis from 10 to 30 as shown in Fig. 6a-c.
In the case of t=15, the optimization results can be calculated nu-
merically and given by (®, [, o, m)=(0.834, 4.736, 0.122, 1), which
the optimal shape of ribbon kirigami is illustrated in Fig. 6d. While
the “number shape union” technology is not as perfect as the La-
grangian multiplier method, because of its simplicity, this can also
accurately provide a result to guide the design of ribbon kirigami.

6. Conclusions

This paper has, through theoretical analysis and FEM, for the
first time, systematically revealed geometry-dependent effect pat-
terns of four dimensionless parameters on the normalized stiffness
and stretchability of planar ribbon kirigami. Excellent accuracy and
scalability of analytical solution by considering LCCB model are
comprehensively verified by combining the tensile experiments,
elasticity theories, beam theories, plane strain FEM and MD sim-
ulations. This study shows that the smaller normalized stiffness
and the larger normalized stretchability, except for some counter-
intuitive expectations, can be realized by the larger [, the smaller
@, the smaller m and the larger «. Not all kirigami configura-
tions are conducive to the enhancement of normalized stretcha-
bility while the corresponding normalized stiffness decreases. Re-
markable long arm effect can, in some case, carry tremendous po-
tential which, is surprising for enhanced normalized stretchabil-
ity and reduced normalized stiffness by several orders of magni-
tude. Based on three facts associated with geometry constraints,
the maximum normalized stretchability can be obtained based on
the “number shape union” technology. In brief, this paper pro-
vides a foundational research to guide the kirigami design in future
application.
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Appendix A
Normalized stiffness is calculated using the following relationship:

= F e
kepr = & -

Uapp
According to free-body diagram and coordinates in Fig. 1b, the internal forces in the curved beam can be calculated by
Mare = ER (1 — cos0) — M,
Vare = E'sin@ (A2)
Ngre = 5 cosf

Marm = 5[R(1 +sina) +scosa] — Mg
Varm = & cosa (A3)
Narm = —£ sina

Nconnection =F (A4)

where N, V and M are respectively the internal normal force at the centroid, the internal shear force, and the internal moment of the cross
section. Then, Castigliano’s theorem is designated to obtain generalized displacement, and determination of boundary condition for 6 =0
is according to Fig. 1a:

au . 0 (Uarc + Uarm) _

— = 0 A5
My My (A5)
where U is the elastic deformation energy. As to arc section
(Z+a)R M2 M...N N2 V2
arc arc’Yarc arc arc
= A
Uare /0 (ZESR *YTEAR T2EA T ch;,c\)dS ! (A6)

as to arm section
! Ngrm Vazrm Mgrm d
Ugm = A7
arm /0<2£A+K26A+ 251) 52 (A7)

where G is shear modulus, « is correction coefficient for strain energy. Then the generalized displacements of arm and arc with respect to
Eq. (A5) can be calculated from Eqs. (A6) and (A7):

8Uarc 1
My — m[2F(AR—S)cosoz—A(7z—1—201)(FR—2M0)] (A8)
Wgrm 11 .
My — E[F(Icosoz+2R(l +sina)) — 4Mp] (A9)
Expression of the corresponding parameters from Eqs. (A6) to (A9) can be given in terms of unit thickness:
E w3 w

where A is the area of cross section, E is plane strain modulus, E is Young’s modulus, f is Poisson’s ratio, I is the second-area moment of
cross section, S is the static moment of the cross section on neutral axis.
Then the insertion of Eqs. (A8) and (A9) into Eq. (A5) gives the following equation for solving My:

F[(—2AIR+ AI%S + 2IS) cos & + AR(Irr + 2IS + 2l + 2ISsina) |
My = (A11)
2A12IS + 1(r + 2a)]
where A, I and S are given in Eq. (A10). To establish the equation of normalized stiffness, the load-displacement relation needs to be
determined. Besides, one more step of re-writing the internal equation has to be performed. Here, the Moore Integral method is adopted
to determine the applied displacement:

Fm
Uapp = 28arc + 28arm + EA (A12)
where
(Q‘F%)R MGTCMGrC NﬂrCMCITC MCITCNGFC NarCNarc Varc‘_/arc
Barc :/ ( ESR EAR ' EAR ' EA X ca )ds t (A13)
| _ i -
Sarm :'/0\ (Narrgzlarm + K varng;Xarm + Marnéllwarm>d52 (A14)

_ We note that the results of Mgrm and Mgrc are corresponding new forms by combining the Eqs. (A2), (A3) and (All). Narm, Varm,
Marm,» Nare, Vare and Mg, are internal forces of the curved beam when F=1. In consideration of load-displacement relation in the case
of o =—m /2, for the straight beam, we get

U app L

F ~ 2EA (A15)
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where L is the length of the unit cell, together with the revisiting of Fig. 1a, it can be determined as
L=2(Rcosa —Isina + m) (A16)

With the function of ugpp in hand, the normalized stiffness can be then obtained from Eqs. (A12), (A15), (A16) and (A1):
80J@? (24)1 + (7 +20)@?)Zy

kepp = _ _ - _ . _ A17
T T48072 + 480J 207 + 187220 + 1920)21m? + 480)in @7 + 696/2I &2 (A17)
+80/Pm ? 4 960]la* + 1392)*laeéo? + 160/ Paeco? — 400* + 80J* — 40/%&*
+98JIm * + 80Jmm * + 10720 + 29Jm2* + 196/lad?* + 160Jmad? + 40w a?
+116]mad?* + 4002* + 116Ja2@* + 2 cos 2aZ, + @? sin 207
where
Zy=(m+ cosa — Isinc) (A18-a)
—20&* + 4002 + 42 (601 + 114126 — 50*
L=\ 12 (rani2 -3] ( P ) . (A18-b)
+@*(2401% + 40P (7 + 2a0) + (7 + 2a)(290° — 120))
Z3 = (216l — 10( + 2a)@? +J (7201 + 2401% (77 + 20) +49(7 +20)@?)) (A18-¢)
&
J=1-—— (A18-d)
Another key mechanics index is normalized stretchability, it is determined by:
- @ _ Eapp (A19)
Smat Emax
For normalized stretchability in Eq. (A19), the applied strain is defined as
Happ (A20)

app = 7 2

where ugpp and L are given in Eqs. (A12) and (A16), separately. With the aid of Eq. (A19), aim of the next step is to obtain the equation of
&max- FOr a given large curvature curved beam (LCCB), effects of pure bending and axial tension are the major contributors to the variation
of hoop stress. It is helpful to understand the pure bending of LCCB. Based on the assumption that normal stress is equal to zero between
the longitudinal fibers, the stress of cross section can be preliminarily written as

1 8(d6)

=E — A21
7T e (A21)

By using the equilibrium equationM = f,yo dA =0, the stress can be expressed in terms of the moment (M) as

M
0= — y - (A22)
(1+2) f, mdA
where r is the curvature radius of the neutral axis. Therefore, the hoop stress in LCCB can be calculated according to Eq. (21) as
M, N,
Oarc = - arcy - e (A23)
(1+3) s Gy da

where
r=R(1-)) (A24)

As the maximum strain in kirigami structure always occurs at the inner arc crest, which is acceptable based on Widlund et al.
(2014) and Zhang et al. (2013). Applying the physical equation, the maximum tensile strain can be given using the following relation-
ship:

1 (~-Mo(R-%-1) F
Emax = E <S(R—%)) + ZA) (A25)

Finally, combining Eqs. (A19), (A20) and (A25), the normalized stretchability can be given by:
480/21* + 480J1@? + 1872]212@?* + 1920/21md? + 480Ji &? + 696)%I7 @?
+80/3 7 @? + 960/l ? + 1392)2lad? + 160/Bad? — 40&* + 80J* — 40/2*

+98JIr % + 80)mmr @ + 107720% + 29 20* + 196]lad? + 160Jmad* + 40 ad?
+116Jra@? + 40a?@* + 116]Ja@? + 2 cos 2aZ, + @? sin2aZ;

g = _ _ (A26)
L[ (1 -]y (24)1 + (70 + 2a)@?) — Zycosa — Zs sina |

where Z;, Z,, Z3 and ] are given according to Eq. (A18), Z4 and Zs are respectively given as follows:

Z4=2(2) - ®)(-@* +J(6I* + @?)) (A27-a)

Zs=24J1(2) — @) (A27-b)

It is noteworthy that the Eqs. (5) and (6) are the same as Eqs. (A17) and (A26), respectively.
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Appendix B

The elasticity solution we derived here for the specific geometry (=0, m=0, o =0) can be described as the problem of a stretching
circular ribbon with two opposite and equal forces along the diameter, as shown in Fig. 4a. Polar coordinate system is designated to
solve the stress and strain field. According to the principle of Airy stress function (Timoshenko and Goodier, 1970), stress function can be
structured as follows:

o0
¢ = (Anr™ + Byr™? 4+ Cor ™ + Dpr"*2) cos nf + Agr* + By Int (B1)
n=2
where Ay, Bn, Gy, Dp, Ag and By are undetermined constants. After verification, Eq. (B1) satisfies the single-valued condition of displacement
and compatible equationV4¢ = (8r2 +1 ar 102 )2 =

2 962
For polar coordinate system, the stress components can be calculated using the following relations:

_ 1039 1 9%
Ur—FBeT+rzw
1 ¢ 1 9°¢

T = 230 ~ T 900

By substituting Eq. (B1) into Eq. (B2), the stress field can be written in terms of the undetermined constants as

or = }<2er + B 1 5 cosnd (1A, + (2 4 P B, — i1 G, 4 (2 - n)rl—"Dn)>
n=2

8

+% Y —n?cosnf (A, + r2*"By + "G, + r2-"Dy)

_ B (=1 +n)nr-2"A, + (1 +n)(2 + n)r"B, + (1 + n)nr—2-"¢, B3
0y = 2Ap +nzzcosn9<+(1—n)(2—n)r‘”Dn (B3)

To=1% Z —nsinnd (r"A,., +12"B, + 171G, + rz—"Dn)
n=2

n=2

-1 22 —nsinnf (nr‘”“An + 2 +mr B, —nr G, + (2 — n)rl—"Dn)
n=

Now, we suppose that two opposite and equal forces are applied to the small range, and the corresponding angle is ®. Therefore, the
applied force can be expressed using piecewise function as

o -0<0<0,71-0<f<7+0
— 126 =v=Y, =V =
F(Q)_{O O<f<7m-0, 1T+ <0 <2 -0 (B4)
Next, Fourier series expansion technology is used here to achieve the calculation of F(0):
_ % N gcos2i0 = 94 S o
F() = 5 +;a,c05219_ 5 +;a,cosn9 (B5)
= 2
where
2 (% F 2F
e /_, 25697 =7p (B6)
2 (% F 2F sinn®
a,-: . 556 cosnfdo =G (B7)
Thus, combining the Eqs. (B5), (B6) and (B7), we obtain
sin n@
F(0) = n— bz cosnf (B8)
Applying (l)inlo sinn® — 1, gives
> 1
Zcosn9=f§ @ +£0,0 —7 £0) (B9)

So far, the preparatory work has be finished, and the next step is to determine the unknown constants based on the following boundary
conditions:

r=a,0,=0
r=a,79=0
r=b,o,=F(0) (B10)

r=b,1=0
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Then the substitution of Eqs. (B3) and (B8) into Eq. (B10) gives the following relationships for solving the undetermined constants:

280+ % =

(-1+ n)na*“”An + (1 +n)(=2+n)a"B, + (1 + n)na—2-"¢,
+(-14+n)2+n)a"D, =0

(=14 n)a AL + (1 4+ n)a"B, — (1 +n)a2""Cy, — (=1 +n)a"D, =0
200+ B =1

(-1+ n)nb AL + (14 n) (=2 +n)b"By + (1 +n)nb—27"C,
+(=1+n)Q2+n)b"Dy = -2

(=1 +n)b=2+"A, + (1 +n)b"B, — (1 +n)b2-"Cy — (=1 +n)b~"D, = 0
This yields

Ao/F = W

Bo/F - _ a’b

7 (—a>+b?)
a2b1 +n (7a2nb2+b2+2n7a2+2nn+a2nb2n)

(B11)

An/F = —
B:/F _ b1+n (_a2+2n+a2[§2711‘222§1ni+a2nb2n) (B]Z)

Gu/F =
Dn/F:_

1+n)mwé
az+2nb1 +n (az"bz—b2+2”+azb2"n—b2+2"n)

(T+mym&
a2n bl +n (a2+2n 7&2 b2n+az b211n7b2+2nn)
(-1+n)m&

where
s — a2+4nb2 _ 2a2+2nb2+2n + a2b2+4n _ a4+2nb2nn2 + 2a2+2nb2+2nn2 _ a2nb4+2nn2 (B13)
Now, fully analytical solutions for the stress components from elasticity theory are achieved according to Eqs. (B3) and (B12), and the
normalized stretchability will be derived after we obtain the strain-displacement relation. Here, with the aid of generalized Hooke’s law,
we have
% =& = %(Ur — L0Op)
&g = ¢ (09 — LOY)

M =reg—u (B14)
Vr&zwtr 2%%+dl*%
Combining the Egs. (B3), (B12) and (B14), the following equation will be provided to solve the strain field:
Tou v v
rof dr r
© [2n(n —1)(1 + w)r*—2An +2n(1 +n)(1 + w)r"B, )
Z sinné (B15)
=2n(1+n)(1 4+ p)r2="C, —2n(n — 1)(1 + u)r"Dy

10 a
43 OB 4 D L [ p(@)d6 — Lo

and the strain components can be expressed as follows:

(1+ p)ynr-1A,

1 By S| (=24 n+ 20 + nu)r*1B,
u= | 2801 - pyr— 21 +p) - > “( 1 pynrionG, cosnd | + p(d) (B16)

"2 (24 n—2u+nu)r"D,
(1 + pynr"-1A,
1T | +@+n+npu)rtB, .
=z > +( + wynr G, sinnf — / p(0)do + p1(r) (B17)
+(—=4+n+nu)r"1D,
where Ap, Bn, Cy, Dy are given in Eq. (B12). Then substituting the Eqgs. (B16) and (B17) into Eq. (B15), gives

10p(6 0
PR L S0 L [ po)de — 1pr(r) = (B18)

where p(6) and p](r) are unknown functions. Next, we designate p;(r)=Mr and p(6)=Hsin 6 + Kcos 6. By utilizing the boundary conditions
0=0,v=0andd =% ,v=0, % = 0, the strain components can be finally written as

(14 pw)nr-14,

O | +(=2+n+2u+nu)r"+1B

u=p| 2001 pyr- 4 -3 —El+u)nr—1lfncn e Bn
n=.

—24n-=2u+nu)r-"+1p,

cos néd

1+ p)ynr"-14A, (B19)

+(4+n+np)r"tB,
+(1 4 p)nr-1-G,
+(—4+n+nu)r"+1p,

sinn6

<
Il
=
=
L2
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With the aid of the assumption of strain extreme point based on Widlund et al. (2014) and Zhang et al. (2013), the applied strain gqpp
and the maximum tensile strain €;4x can next calculated using the following relationships:

(1 + p)nb™ 14,
1 B & | (=24 n+2p+npu)b" 1B,
E 2A0(l /L)b To(l +M) nE:Z _(1 -l—,l,L)le_]_nCn
—24n-2u+nw)b="+1D,
Rcosa — Isina +m

00 _ —24n n
gmale 2A0_@+Z (=1 +mna=2*"A, + (1 +n)(2 +n)a"B, cos "% (B21)
E a? =

(B20)

Eapp =

+(1 +nmna—2-"G,+ (1 -n)(2 —n)a"Dy 2

Substitution of gqpp and emqx into Eq. (2), gives the following equation for solving the normalized stretchability with respect to elasticity
theory

2801 _ )2 — Boq _
F( M)R FbR( +M) z 7(1+,u,)nb*1*”% 7(2+n72M+nM)b—n+l%

oo |:(1 +pnb A (22 404 20 + )b B i|
n=2

(B22)

(L
Il

00 _ —24nAg nBn
24 Fggﬁz(( 1+n)na +(1+n)Q2+nyak )COS,,;

PR T S\ +(1+n)na? "+ (1-n)(2—nya "2

where w = /(1 — [1), An[F, BaE, Co|F, Dn[F, Ag/F and Bgy/F are given in Eq. (B12). Lastly, we designate the value of nmax and corresponding
normalized stretchability can be obtained by series expansion form. It is important to note that Eq. (B22) is the same as Eq. (8).

Appendix C

Based on LCCB theory derived in Appendix A, the framework of beam theory can be obtained, that is, if we designate y/r<< 1, stress
can be expressed as o = My/f4y2dA. Thus, the denominator f,y2dA has been degenerated into the second-area moment of cross section I.

For the sake of simplicity, we utilize the same methods to determine the normalized stretchability as compared with that of LCCB
theory in the following derivation. Firstly, the unknown moment M, should be determined. According to the free-body diagram, the
internal forces are obtained and given in Eqs. (A2), (A3) and (A4). Then, based on internal force equations, elastic deformation energy for
arm section and arc section can be calculated by:

Uare = /0 (ZEA tH56a Tt 2E )ds] (€1
1 2 2 2
_ Nﬂrm Varm Mﬂrm
Uarm = /0 <ZEA tRo6a T 2E )92 (€2)

where « is correction coefficient of strain energy. According to the Castigliano’s theorem and the boundary condition, the following equa-
tion can be used to solve My:

8 (Uarc + Uarm) —
dMp
Substituting Eqs. (C1), (C2) into Eq. (C3), gives

F((1? - 2R?) cos + R(2l + 7R + 2Ra + 2l sinar))
4] 4+ 2R( +2a)
Next, we re-write the internal equations based on Eq. (C4) as follows

Mare = £8 (1 — cos0)
F((1>-2R?) cos a+R(2l+7 R+2Rar+2l sina) )
- ] 41+2R(m+2) (CS)
Vare = £ sinf
Nore = 5 cos®

0 (C3)

Mo = (C4)

Marm = 5[R(1 + siner) + s cos ]
F((1>-2R?) cos a+R(2l+m R+2Ra+2l sina) )

A+ 2R (7 +20) (ce)
Varm = 5 cosa
Narm = —£ sina
Nconnection =F (C7)

By using the Moore Integral method, the load-displacement relation can be obtained according to Eq. (C8):
! NormNarm VarmVarm . MarmMarm
Uapp = 2<fo 7 S A o7 Sl ey o )d52>

—|—2<f0 aJr%)R (NG,E,[XWC +K Var(C;Zﬂrt + Mar?f’arc)ds]> + 1;77:
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L6 T T T T ]
— LCCB Theory (Eq.6)
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Fig. D1. Comparison of MD simulation results and analytical modeling for the first design variable « and invariants =0, m=0 and & =0.4.

where Narm, Varm, Marm, Nare, Vare and Mare are corresponding internal forces when F= 1. Thereby, combining Eq. (C5)-Eq. (C8), the applied
strain can be calculated. Moreover, the maximum strain can be given by

~Moy\ [~ #

Emax = ( EI )‘9:0 ()
Based on Eq. (2) or Eq. (A19), the normalized stretchability from beam theory in terms of four independent dimensionless parameters

can be calculated using the following equation:

—12 4+ 122 + [* + 127 +2P7 + 372 + 24l + 4Pa + 121 + 1202

+4lm@? + (12 + 12 + 1* — 61 (7 + 2a) + 21 (7 + 2a)) cos 2a

+3(61 — 7w — 2a + 22 (7w + 20)) sin 20 + 2177w ? + 4o

™
Il

- - - - C10
6 (m + cosa — lsina)(21+n +20 + (-2 +12) cosa + 2Isina) (C10)

which the Eq. (9) is the same as Eq. (C10).
Appendix D

Because of non-dimensionalization nature, expression of the key mechanics is scalable. Corresponding to analysis of kirigami
macrostructures via finite element methods, extensive atomistic simulations are performed to explore the kirigami nanostructures us-
ing MD engine LAMMPS (Plimpton, 1995). For low dimension silicon kirigami, the Erhart/Albe-Tersoff potential is applied to describe the
Si-Si atoms interactions. Velocity-Verlet algorithm is applied to calculate the motion equation, and the time step is designated as 0.001 ps.
Initial equilibrium of the system is relaxed at 0.1 K for 5 ps with the use of Nose-Hoover thermostat. After that, the displacement loadings
(0.02nm/ps) is applied on the right end of silicon kirigami, while the left end is fixed. For all cases in Fig. D1, the silicon kirigami struc-
tures with different geometries are generated by using in-house code, the nanoribbon width and thickness of silicon kirigami are 27.15 A
and 108.6 A, respectively. Initial cracks should be introduced at the inner arc crest to control the propagation direction of nanocrack. Im-
portantly, direction of the thickness should be designated as the periodic boundary condition, so that MD simulation of silicon kirigami
can successfully simulate the plane strain model in this paper. Fig. D1 shows that the normalized stretchability of silicon kirigami is in
line with the analytical solution based on LCCB theory, while we neglect the size effect of low dimension silicon kirigami. In future, we
hope special care should be taken when nanoribbon kirigami plays a more important role in stretchable devices.
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