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a b s t r a c t 

This paper lays stress on the normalized stiffness and stretchability of planar ribbon kirigami. A dimen- 

sionless analytical model is proposed based on plane strain beam theory, in which the large curvature 

curved beam (LCCB) model is considered. The tensile experiments and simulations are performed and 

compared to validate the analytical model based on four dimensionless parameters. It is found that not 

all kirigami-based design is conducive to the enhancement of normalized stretchability. Remarkable long 

arm effect can enhance the normalized stretchability or reduce the normalized stiffness by several orders 

of magnitude. Finally, an optimization method is used to obtain the maximum normalized stretchability. 

The results in this paper can be used to guide the kirigami design in future application. 

© 2019 Published by Elsevier Ltd. 
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1. Introduction 

Kirigami, as a unique art form, primarily points to excise the

paper at specific locations. Recently, kirigami has gained consider-

able anticipation among scientists as a superior design paradigm in

various engineering fields. In particular, krigami-engineered elas-

ticity ( Callens and Zadpoor, 2017 ) is proposed as an ideal ap-

proach towards stretchable electronics ( Guan et al., 2018; Shyu

et al., 2015 ), diffraction gratings ( Xu et al., 2016 ), force sensors

( Blees et al., 2015 ), solar trackers ( Lamoureux et al., 2015 ), soft

deployable reflectors ( Wang et al., 2017 ), sun-shading ( Tang et al.,

2017 ), and triboelectric generators ( Wu et al., 2016 ). 

Meanwhile, several design strategies have been developed

to research the krigami-engineered elasticity. For the first de-

sign strategy, the thin sheets can be regularly excised using

the pattern of straight cut, which the mechanism involving the

post-buckling ( Rafsanjani and Bertoldi, 2017 ) of kirigami mo-

tifs can guarantee the krigami-engineered elasticity. Especially,

Blees et al. (2015) opened a new era towards one-atom-thick ma-

terial kirigami. Isobe and Okumura (2016) carried out scaling law

derivations and experiments to unveil the transition mode be-

tween in-plane and out-of-plane responses of kirigami. More re-

cently, Yang et al. (2018) performed theory model construction
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sing energy approach and a set of experimental and numerical

tudies on multistable kirigami. Upon uniaxial tensile loading, the

hin kirigami structure can buckle out-of-plane as lateral bending

onsumes less energy than in-plane bending, allowing it undergo-

ng ultimate tensile strain and achieving in situ tunable mechan-

cal properties. The second strategy is combining the first strat-

gy of straight cuts to create fractal design in 2D sheet, but the

irigami structure has a huge thickness to provide in-plane defor-

ation of units around the hinges, which the lateral buckling is

uppressed. Cho and coworkers demonstrated the substantial in-

reasing of stretchability could be obtained by an enhanced level

f hierarchy ( Cho et al., 2014; Tang et al., 2015 ). The design prin-

iple with kirigami-based expandability of > 800% greatly expands

he design space for pluripotent materials, and leads to a manage-

ble set of design paradigms ( Shan et al., 2015; Tang and Yin, 2017 )

specially for stretchability modifications of brittle materials. 

In addition to the abovementioned design strategies, variable

eometrical design is crucial to create new opportunities for mul-

ipotent materials and structures ( Dias et al., 2017; Holmes, 2019 ).

he promising design strategy concerning geometry-dependent

ibbon kirigami in this paper is inspired by the pattern of curve

ut from Chinese paper art. Similar to the second design strat-

gy involving the in-plane mechanical responses, the huge thick-

ess of ribbon kirigami can suppress its lateral buckling under the

niaxial tension ( Hwang and Bartlett, 2018; Jang et al., 2017; Xu

t al., 2016 ). However, the research into mechanical performance

f geometry-dependent planar ribbon krigami is scarce, and this

https://doi.org/10.1016/j.ijsolstr.2019.08.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2019.08.007&domain=pdf
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Nomenclature 

R The arc radius 

α The arc angle 

ω The ribbon width 

ω̄ The ribbon width/radius ratio 

l The arm length 

l̄ The arm length/radius ratio 

m The connection length 

m̄ The connection length/radius ratio 

L The length of the unit cell 

L 1 Two outer arc crest length between two hinge joints 

L̄ 1 The dimensionless form of L 1 
L 2 The half distance between two adjacent unit cells 

L̄ 2 The dimensionless form of L 2 
L 3 The distance of in-plane breadth 

L̄ 3 The dimensionless form of L 3 
k̄ e f f The normalized stiffness 

ε̄ The normalized stretchability 

M 0 The balancing moment 

F The end force 

F ′ The end force of a straight beam 

u app The applied displacement 

u ′ app The applied displacement of a straight beam 

N The internal normal force 

V The internal shear force 

M The internal moment 

N̄ Internal normal force for F = 1 

V̄ Internal shear force for F = 1 

M̄ Internal moment for F = 1 

U The elastic deformation energy 

A The area of cross section 

E The plane strain modulus 

Ē Young’s modulus 

G Shear modulus 

μ̄ The Poisson’s ratio 

I The second-area moment of cross section 

S The static moment of the cross section on neutral 

axis 

κ The correction coefficient of strain energy 

ε f app The elastic stretchability 

ε f mat The intrinsic failure strain 

εapp The applied strain 

εmax The maximum tensile strain 

σ arc The hoop stress in curve beam 

θ The angular variable 

s 1 The arc-length variable 

s 2 The linear variable 

t The scaling factor for in-plane breadth 

r The curvature radius of the neutral axis 

s especially true for the cases of stiffness and stretchability. And

he geometry effects including or excluding geometry constraints

n the key mechanical responses of ribbon kirigami structures are

arely investigated as well. 

Here, we report the geometry-dependent normalized stiffness

nd stretchability of ribbon kirigami with large thickness. The lat-

ral buckling is suppressed. The plane strain beam and large cur-

ature curved beam (LCCB) model are considered. Timoshenko and

oodier (1970) compared the elasticity theory with the LCCB the-

ry and beam theory in the case of pure bending of the beam

ith different width/radius ratio (rectangular cross-section). They

ound that LCCB solution was in good agreement with elastic-

ty solution. The relative error of pure bending normal stress be-
ween beam theory and LCCB solution was always smaller than

% for width/radius ratio < 0.2. While, due to their large margin

f relative error when width/radius ratio ≥ 0.2, it was unsuitable

o evaluate the large curvature curved beam using beam theory.

herefore, to design, evaluate and develop ribbon-kirigami-based

tretchable devices, it is necessary and significant to provide a the-

retical framework based on the appropriate analytical model. 

This paper is organized as follows. Section 2 establishes ana-

ytical model of normalized stiffness and normalized stretchabil-

ty using Castigliano’s theorem and Moore Integral method. The

orresponding derivations based on elasticity theory and beam

heory are provided. The numerical and experimental methods

re summarized in Section 3 . Section 4 is dedicated to the com-

arison of analytical solution with experiments and simulations.

ection 5 presents the designing of maximum normalized stretch-

bility under geometry constraints. Finally, Section 6 gives the con-

luding remarks. 

. Analytical model 

The kirigami structure we explored in this research is estab-

ished by considering one-directional periodic boundary condition.

or the sake of depicting our design paradigm, a typical kirigami

nit cell is illustrated in Fig. 1 a. The first key parameter to char-

cterize the kirigami structure is arm length ( l ). The connection

ength ( m ) is then designated to adjust the distances between

wo adjacent unit cells. In this model, we consider a curved sec-

ion (arc) between two arms, which the arcs can be described by

he radius ( R ) and arc angle ( α). Thus, the length L of a kirigami

nit cell can be calculated by L = 2( R cos α − l sin α + m ). And the

irigami structure can become a straight ribbon if α = −π /2. 

Through dimensional analysis method, four independent di-

ensionless parameters can vigorously define the proposed

irigami structure, the width of ribbon/radius ω̄ = ω/R , the length

f connection/radius m̄ = m/R , the length of arm/radius l̄ = l/R and

rc angle α. Thereby, design variables possess four degrees of free-

om in the design space of kirigami structures as illustrated in

ig. 1 c, adapted from Yang et al. (2016) . A series of kirigami struc-

ures can be described by different combinations of these four pa-

ameters, which the representative geometries are systematically

ummarized in Fig. 1 c. 

A uniaxial force ( F ) in the periodicity direction is applied at the

nd of connection. And it is customary to use the symmetry as the

implified measures in material mechanics. As seen in Fig. 1 b, the

onnection section is firstly separated out and the remaining one

uarter of the kirigami structure can be designated as a simplified

nalytical model. Then this process is performed by clamping its

eft end, the right end is considered free and subjected to a bal-

ncing force F /2 and a balancing moment M 0 . 

As the current research intends to provide insights into

eometry-dependent mechanical responses involving large 

idth/radius ratio. Closed-form analytical results for the key

echanics of kirigami structures are derived by considering the

lane strain beam theory and large curvature curved beam (LCCB)

odel, as detailed in Appendix A . 

In particular, normalized stiffness is the first important me-

hanical behavior, and it can be defined according to Eq. (1) : 

¯
 e f f = 

F 

F ′ ·
u 

′ 
app 

u app 
(1) 

here u app is the applied displacement for F in the connection

ection, F ′ and u ′ app are end force and applied displacement of a

traight beam when α = −π /2, respectively. The second key me-

hanics index is normalized stretchability, it is determined using a
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Fig. 1. (a) Illustration of a typical kirigami unit cell with geometry parameters and boundary conditions labeled. (b) Schematic of simplified analytical model for a kirigami 

unit cell and direction of internal forces labeled. (c) Design space for ribbon kirigami defined by four independent dimensionless parameters ( ̄ω , l̄ , m̄ and α). (For interpre- 

tation of the references to color in text, the reader is referred to the web version of this article.) 
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continued equality: 

ε̄ = 

ε f app 

ε f mat 

= 

ε app 

ε max 
(2)

where ε f app and ε f mat are respectively the elastic stretchability and

intrinsic failure strain of material, εapp and εmax represent the ap-

plied strain and the maximum tensile strain of kirigami structure,

separately. The failure criterion we used here is ε max = ε f mat . For

brittle materials, ε f mat signifies corresponding rupture strain. 

As the simplified analytical model in Fig. 1 b is a statically inde-

terminate problem, the unknown M should be determined first. In
0 
ppendix A , utilizing the Castigliano’s theorem gives the following

quation for solving M 0 : 

 0 = 

F 
[(

−2 AIR + A l 2 S + 2 IS 
)

cos α + AR ( Iπ + 2 lS + 2 Iα + 2 lS sin α) 
]

2 A [ 2 lS + I ( π + 2 α) ] 

(3)

It is noteworthy that the advantage of using kirigami structure

ith large thickness/width ratios is that the lateral buckling can be

uppressed. The effective approach adopted in the current research

ses unit thickness models based on the two-dimensional plane

train. Expression of the relevant parameters from Eq. (3) can be
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iven in terms of unit thickness, i.e. 

 = ω , I = 

ω 

3 

12 

, S = ω 

(
R − ω 

ln 

2 R + ω 
2 R −ω 

)
(4)

here A is the area of cross section, I is the second-area moment

f cross section, S is the static moment of the cross section on

eutral axis. With the function of M 0 in hand, the Moore Inte-

ral method is then adopted in Appendix A to determine the nor-

alized stiffness and stretchability of kirigami structure. Based on

q. (1) , the normalized stiffness containing the geometry parame-

ers ( ̄ω , l̄ , m̄ and α) is given using the following relationship: 

¯
 e f f = 

80 J ̄ω 

2 
(
24 J ̄l + ( π + 2 α) ̄ω 

2 
)
Z 1 ⎡ 

⎢ ⎣ 

4 80 J 2 l̄ 4 + 4 80 J ̄l 2 ω̄ 

2 + 1872 J 2 l̄ 2 ω̄ 

2 + 1920 J 2 l̄ m̄ ̄ω 

2 + 4 80 J ̄l π

+80 J ̄l 3 πω̄ 

2 + 960 J ̄l αω̄ 

2 + 1392 J 2 l̄ αω̄ 

2 + 160 J ̄l 3 αω̄ 

2 − 40

+98 J ̄l πω̄ 

4 + 80 J m̄ πω̄ 

4 + 10 π2 ω̄ 

4 + 29 J π2 ω̄ 

4 + 196 J ̄l αω̄
+116 Jπαω̄ 

4 + 40 α2 ω̄ 

4 + 116 J α2 ω̄ 

4 + 2 cos 2 αZ 2 + ω̄ 

2 sin

The normalized stretchability based on Eq. (2) can be related to

eometry parameters ( ̄ω , l̄ , m̄ and α) by 

¯ = 

⎡ 

⎢ ⎣ 

4 80 J 2 l̄ 4 + 4 80 J ̄l 2 ω̄ 

2 + 1872 J 2 l̄ 2 ω̄ 

2 + 1920 J 2 l̄ m̄ ̄ω 

2 + 4 80 J ̄l πω̄

+80 J ̄l 3 πω̄ 

2 + 960 J ̄l αω̄ 

2 + 1392 J 2 l̄ αω̄ 

2 + 160 J ̄l 3 αω̄ 

2 − 40 ̄ω 

4

+98 J ̄l πω̄ 

4 + 80 J m̄ πω̄ 

4 + 10 π2 ω̄ 

4 + 29 J π2 ω̄ 

4 + 196 J ̄l αω̄ 

4 +
+116 Jπαω̄ 

4 + 40 α2 ω̄ 

4 + 116 J α2 ω̄ 

4 + 2 cos 2 αZ 2 + ω̄ 

2 sin 2 α
40 ̄ω 2 Z 1 

2 −ω̄ 

[
( 1 − J ) ̄ω 

(
24 J ̄l + ( π + 2 α) ̄ω 

2 
)

− Z 4 cos α

where Z 1 , Z 2 , Z 3 , Z 4 , Z 5 and J are provided in Appendix A (see Eq.

A18) and Eq. (A27)). 

To provide a more useful form of analytical result to an experi-

entalist in designing kirigami-based devices, the special case for

= 0 is given as follows, and the normalized stretchability can be

pproximately calculated as 

¯ ( α = 0 ) ≈
(
−24 + 3 π2 + 2 ̄m πω̄ 

2 + 4 ̄l ̄m ̄ω 

2 + 6 ̄l π + 24 ̄l 2 + 4 ̄l 3 π + 2 ̄l 4 
)

6 ̄ω ( ̄m + 1 ) 
(
π − 2 + 2 ̄l + ̄l 2 

)
(7) 

So far, key mechanics indexes towards normalized stiffness

nd stretchability have been provided. Preliminary inspection of

q. (5) is performed, and we find that the relations between nor-

alized stiffness and ω̄ , m̄ , l̄ are monotonic, separately. However, it

s difficult to determine the effect of α on normalized stiffness. Be-

ause of complexity, we cannot facilely find the relation between

ormalized stretchability and four independent dimensionless pa-

ameters in Eq. (6) . And thus, further analysis should be suitably

arried out, as we provided in Section 4 . 

Additionally, to provide a full understanding of the LCCB model

n stretchability of kirigami structures, the analytical model is

ompared with the series-expansion-term-dependent elasticity so-

ution derived in Appendix B and degenerated LCCB solution (beam

heory) derived in Appendix C . According to the linear elasticity

nd small deformation assumption, this process is also performed

n Section 4 . 

. Simulation and experiment methods 

Finite Element Method (FEM): Simulation analysis is performed

ith the use of plane strain FEM in the ABAQUS code. Our ma-

erial properties are similar to ones used in other studies of the

tretchability of silicon ( Lu and Yang, 2015 ). Young’s modulus is
¯
 = 130 GPa, Poisson ratio is μ̄= 0.27. The size of elements is care-

ully determined by using convergence test. Thus, all FEM models

ave the same size level of 0.1 ω. Nominal strain of 0.02 is exter-

ally applied to the whole models and the corresponding coupling

oint should be correctly selected. 
 696 J 2 l̄ πω̄ 

2 

 80 J ̄ω 

4 − 40 J 2 ω̄ 

4 

60 J m̄ αω̄ 

4 + 40 παω̄ 

4 

 3 

⎤ 

⎥ ⎦ 

(5) 

96 J 2 l̄ πω̄ 

2 

 J ̄ω 

4 − 40 J 2 ω̄ 

4 

 J m̄ αω̄ 

4 + 40 παω̄ 

4 

⎤ 

⎥ ⎦ 

 

sin α
] (6) 

Experiment: Each kirigami structure is manufactured using 3D-

rinted Somos® Imagine 80 0 0 resin material. The tensile experi-

ent using INSTRON 5965, US is conducted to validate the analyt-

cal model. Concretely speaking, the specimen is slowly and care-

ully clamped with antiskid, and then the strain is measured as

recisely as possible with the high-precision non-contacting video

xtensometer (the measurement accuracy (axial and transverse) is

2.5 μm). A strain ratio of 0.001 s −1 is used which produced the

xact stress-strain curve. According to Eq. (2) , one has to separately

heck the strain in a curved beam and in a straight beam. The

lastic stretchability is determined by using a number of kirigami

tructures, while the corresponding straight specimen ( α = −π /2)

s carefully measured for intrinsic failure strain, in order to get

xact results of normalized stretchability. Finally, the stress-stain

urve, elastic stretchability and intrinsic failure strain of kirigami

tructures with different geometries can be experimentally ob-

ained to determine their normalized stretchability. If the obtained

xperimental data are found in accordance with the theory and

EM results, our LCCB theory modeling can provide insights into

he rational design and practice of planar ribbon kirigami. 

. Results and discussion 

.1. Effects of geometry parameters on the normalized stiffness 

Figs. 2 and 3 provide the comparison of analytical solutions and

EM results for plane strain model we proposed. Fig. 2 a–f reveal

he geometry-dependent normalized stiffness using the reciprocal

f Eq. (5) . As the normalized stiffness mentioned here involves

he contributions of curved beam and straight beam ( α = −π /2).

herefore, if we designate the same applied displacement or end

orce, the Eq. (5) can be simplified as F / F ′ or u ′ app / u app , based on

hich considerable FEM computations can be avoided. As illus-

rated from Fig. 2 a to f, analytical solution according to Eq. (5) is

lotted as the solid lines, and FEM results are described by the

lled rectangles. Design space for kirigami structure defined by

our independent dimensionless parameters and representative ge-

metries are displayed in the insets. The first design variable (in-

ependent variable) is represented by axis that marked with red

olor, while the second design variable is represented by green co-

rdinate axis (Yellow marked coordinate axis represents the third

esign variable see Fig. 2 g and h). Blue marked coordinate axis sig-

ifies invariant that the variable is fixed in the design space. Over

he whole domain, the FEM results are in excellent agreement with

he analytical solutions, which can be attributed to the appropriate

erivation involving the consideration of LCCB, application of Cas-

igliano’s theorem, and execution of Moore Integral method. We
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firstly investigate the effect of α on normalized stiffness, which is

the burning question as mentioned above. Obviously, Fig. 2 e and f

show that with increasing of the first design variable α the nor-

malized stiffness is monotonic increasing. However, two important

observations should be reported: first, when α is closed to −π /2,

it causes a drastic drop of 1 / ̄k e f f . In particular, if the kirigami

structure devolves into a straight beam, a direct consequence of

1 / ̄k e f f = 1 can be obtained according to Eq. (1) . Second, the recip-

rocal of normalized stiffness 1 / ̄k e f f is increasing due to α increas-

ing, till somewhere from 0 to 1, the solid line converges to the cor-

responding asymptotic line, indicating that the kirigami structures

are geometry-constrained and non-overlapped. Geometrically, if ω̄ ,

m̄ and l̄ have been fixed in kirigami structures, the penetration of

internal material, because of the variation of arc angle α, is not

allowed. To give a further explanation of geometry constraint, we

will systematically discuss it in Section 5 . 

Comparing Fig. 2 a to f, while the effect patterns of ω̄ , m̄ , α and

l̄ on normalized stiffness, as outlined in Section 2 , are all mono-

tonic, for instance, the smaller l̄ , the larger ω̄ , the smaller α, and

the larger m̄ will generate larger k̄ e f f . Reduction of normalized

stiffness can be attained more than several orders of magnitude
Fig. 2. (a) The reciprocal of normalized stiffness versus the first design variable ω̄ when

of normalized stiffness versus the first design variable ω̄ when the second design variab

a function of the first design variable l̄ when the second design variable is ω̄ and invaria

first design variable l̄ when the second design variable is m̄ and invariants are α = 0, ω̄

when the second design variable is l̄ and invariants are m̄ = 0, ω̄ = 0.2. (f) The reciprocal

variable is m̄ and invariants are l̄ = 3, ω̄ = 0.2. Representative geometries are displayed in

l̄ , the second design variable m̄ , the third design variable ω̄ and invariant α = 0. (h) Distri

variable m̄ , the third design variable l̄ and invariant ω̄ = 0. (For interpretation of the refer
y simple kirigami design instead of straight ribbon. For example,

n the case of ω̄ = 0 . 2 , l̄ = 3 and m̄ = 0 (see Fig. 2 f), the normal-

zed stiffness of kirigami structure is decreased by 366.53 times

s compared with that of the straight beam when α is increas-

ng from –7 π /18 to π /12. These constitute dramatic evidences of

he ultra-low stiffness for kirigami ribbons in terms of graphene

irigami ( Qi et al., 2014 ), MoS 2 kirigami ( Hanakata et al., 2016 )

nd paper kirigami ( Hua et al., 2017 ) in the stage of initial rigid

esponse ( Isobe and Okumura, 2016 ). Depending on the number of

nvariants, the reciprocal of normalized stiffness 1 / ̄k e f f in relation

o two invariants has been investigated as indicated in Fig. 2 a–f. By

ppropriately designating the design variables, Fig. 2 g and h pro-

ide insights into the normalized stiffness k̄ e f f of kirigami struc-

ure with respect to one invariant. The color bar represents the

alue of k̄ e f f according to the combination from the first to third

esign variable. The blank space represents the overlapping geom-

try for kirigami structure. The red dots as listed in Fig. 2 g and

 represent the partial geometries with different design variables,

hich are also prepared in the FEM simulations. The most com-

rehensive understanding stemmed from Fig. 2 g and h is that 3D

raphs give us not only the identical results to graphs in Fig. 2 a to
 the second design variable is l̄ and invariants are α = 0, m̄ = 0. (b) The reciprocal 

le is m̄ and invariants are α = 0, l̄ = 5. (c) The reciprocal of normalized stiffness as 

nts are α = 0, m̄ = 0. (d) The reciprocal of normalized stiffness as a function of the 

 = 0.5. (e) The reciprocal of normalized stiffness versus the first design variable α

 of normalized stiffness versus the first design variable α when the second design 

 the insets. (g) Distribution of the normalized stiffness for the first design variable 

bution of the normalized stiffness for the first design variable α, the second design 

ences to color in text, the reader is referred to the web version of this article.) 
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Fig. 2. Continued 
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 but also the broader landscapes and scopes of four independent

imensionless parameters. 

.2. Effects of geometry parameters on the normalized stretchability 

Fig. 3 reveals the effects of geometric parameters on normalized

tretchability by using the reciprocal of Eq. (6) . Generally speak-

ng, the FEM results show excellent agreement with the analyt-

cal solution according to Eq. (6) , which the analytical and FEM

olutions are separately plotted as the solid lines and filled rect-

ngles. Fig. 3 a and b provide typical evolutions for the increas-

ng of ω̄ : the effect of the first design variables are monotonic.

ut the corresponding second design variables are obviously dif-

erent, which are respectively related to the arm length/radius l̄ 

nd length/radius m̄ . With increasing of ω̄ the normalized stretch-

bility ε̄ decreases, indicating that the large ω̄ , in principle, is al-

ays adverse to the in-plane rigid rotation of kirigami structures.

n other words, the pure bending strain accounts for a large pro-

ortion as compared with that of the small ribbon width/radius

atio ω̄ . However, for the potential applications, such as kirigami

tructures for integrated solar tracking ( Lamoureux et al., 2015 ),

he minimum width/radius ratio ω̄ will restrict the device perfor-

ance (such as GaAs kirigami tracker). Therefore, there is an ur-

ent need to design a very stretchable kirigami structure under

ertain geometric constraints. Toward this end, by considering the

on-overlapping conditions, the most stretchable ribbon kirigami

ith a specific in-plane breadth is designed in Section 5 . It is ap-

arent that ε̄ will increase if l̄ increases as indicated in Fig. 3 a

r m̄ decreases in Fig. 3 b for given ω̄ . And for all cases listed in
ig. 3 a and b, stretchability enhancement of kirigami structure due

o l̄ is significant. For example, in the case of α = 0, ω̄ = 0.4 and

¯  = 0, the normalized stretchability ε̄ is increased by a factor of 18

hen l̄ increases from 0 to 5, which signifies the attractive abil-

ty for kirigami design presents a desirable technology in reduc-

ng the intrinsic tensile strain. Fig. 3 c and d give a further inves-

igation of the arm length/radius l̄ , which the second design vari-

bles are ribbon width/radius ω̄ and connection length/radius m̄ ,

espectively. As l̄ increases, a sharp drop of the reciprocal of nor-

alized stretchability 1 / ̄ε can be observed as evident in Fig. 3 c

nd d. Therefore, this gives rise to so-called long arm effect of

irigami structure. The contribution of long arm effect on stretcha-

ility enhancement of ribbon kirigami is in accordance with previ-

us experiment and simulation results, such as those for kirigami

anocomposites as diffraction gratings reported by Xu et al. (2016) ,

or kirigami-based force sensors reported by Blees et al. (2015) , for

tretchable kirigami polymer with high electrical conductivity re-

orted by Guan et al. (2018) , and for conducting kirigami compos-

tes as stretchable electrodes reported by Shyu et al. (2015) . The

ffect of the first design variable α on 1 / ̄ε is visible in Fig. 3 e and

, and the second design variables are separately designated as l̄ 

nd m̄ . In comparison with the monotonicity of α in Figs. 2 and 3 ,

e find that the curves in Fig. 3 e are not all monotonic. For small

rm length/radius such as l̄ = 0, Fig. 3 e display the evolution for the

increasing from −1.5: first a linear increase of 1 / ̄ε followed by

 drop, after which the reciprocal of normalized stretchability 1 / ̄ε 
aries in a lesser extent. But the curves become monotonic (due to

he long arm effect) when l̄ is large, which in-plane enhanced rigid

otation due to large l̄ suppress the in-plane bending effect. Strik-
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Fig. 3. (a) The reciprocal of normalized stretchability versus the first design variable ω̄ when the second design variable is l̄ and invariants are α = 0, m̄ = 0. (b) The 

reciprocal of normalized stretchability versus the first design variable ω̄ when the second design variable is m̄ and invariants are α = 0, l̄ = 5. (c) The reciprocal of normalized 

stretchability as a function of the first design variable l̄ when the second design variable is ω̄ and invariants are α = 0, m̄ = 0. (d) The reciprocal of normalized stretchability 

as a function of the first design variable l̄ when the second design variable is m̄ and invariants are α = 0, ω̄ = 0.5. (e) The reciprocal of normalized stretchability versus the 

first design variable α when the second design variable is l̄ and invariants are m̄ = 0, ω̄ = 0.2. (f) The reciprocal of normalized stretchability versus the first design variable α

when the second design variable is m̄ and invariants are l̄ = 3, ω̄ = 0.2. (g) Distribution of the reciprocal of normalized stretchability for the first design variable l̄ , the second 

design variable m̄ , the third design variable ω̄ and invariant α = 0. (h) Distribution of the reciprocal of normalized stretchability for the first design variable α, the second 

design variable m̄ , the third design variable l̄ and invariant ω̄ = 0.2. (For interpretation of the references to color in text, the reader is referred to the web version of this 

article.) 
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Fig. 4. (a) The reciprocal of normalized stretchability obtained from elasticity theory, LCCB theory, beam theory and FEM for specific ribbon kirigami with invariant α = 0, 

m̄ = 0, l̄ = 0 as a function of ω̄ . (b) The normalized stretchability obtained by LCCB theory solution and beam theory solution as a function of l̄ , and due to the long arm 

effect the normalized stretchability can be enhanced by several orders of magnitude. (For interpretation of the references to color in text, the reader is referred to the web 

version of this article.) 

i  

e  

e  

S  

s  

p  

a

 

c  

p  

F  

a  

o  

o  

r  

c  

r  

a  

v  

o  

f  

i  

i  

k  

r  

g  

f  

r  

t  

w

4

 

o  

m  

d  

s  

t  

o

 ( −2 

 

 

− ( 2

 ) ( 2 +
 ) ( 2 −

 

p  

i  

a  

A

(

 

m  

E  

s  

o  

n  

o  

ω  

w  

f  

c  

t  

i  

a  

t  

n  

t  

h  

o  

i  

p  

a  

a  

t  

i  

i  

ω  

t  
ngly, in some cases the reciprocal of normalized stretchability will

xceed 1, this suggests that the maximum tensile strain εmax may

xceed the applied strain εapp according to Fig. 3 e, f and Eq. (2) .

imilar phenomena are also observed in Fig. 3 c and d. These ob-

ervations directly demonstrate that ribbon kirigami design by ex-

erience should be carefully carried out, and not all kirigami motifs

re helpful to enhance the stretchability. 

Fig. 3 g and h reveal the effect of one invariant on the recipro-

al of normalized stretchability 1 / ̄ε according to Eq. (6) , which this

rocess is in line with the investigation of normalized stiffness in

ig. 2 g and h. Red dots represent the cases where simulations are

vailable. But the value of the color bar represents the magnitude

f 1 / ̄ε instead of ε̄ , and we have to plot it in such a form because

f more friendly landscapes. The blank space, as reported above,

epresents the inaccessible geometries for ribbon kirigami, which

an be obviously illustrated in Fig. 3 g. Note that the arm length of

ibbon kirigami can take a large value range when α = 0. To give

 full understanding of the long arm effect, we compare and in-

estigate some extreme cases based on elasticity theory, LCCB the-

ry and beam theory in Fig. 4 . It is seen from Fig. 3 h that the ef-

ect of α is nonmonotonic according to the color distribution, but

t can bring substantial increases in the landscape of 1 / ̄ε . There

s, in fact, much evidence to indicate that the previous design of

irigami structure by rule of thumb is not always able to provide a

eliable guideline in enhancing the stretchability. Thus, the arc an-

le α should be precisely controlled in kirigami design. Moreover,

or small α, large l̄ is still a great motivator to decrease the recip-

ocal of normalized stretchability 1 / ̄ε based on in-plane rigid rota-

ion. Specifically, the significant reduction can be found in Fig. 3 h

here is represented by the counterintuitive yellow zone. 

.3. Comparison of different theoretical solutions 

A combination of two dimensional plane strain elasticity the-

ry, LCCB theory and beam theory is employed to analyze the nor-

alized stiffness and stretchability. Based on boundary value con-

ition and Airy’s stress function in a series form, we use Fourier

eries expansion technology to obtain the elasticity solution. Here,

he elasticity solution of normalized stretchability with specific ge-

metry, as derived in Appendix B , is given, as follows: 

( ̄ε ) Elast icit y = 

2 

A 0 
F ( 1 − μ) b R 

− B 0 
F bR ( 1 + μ) −

∞ ∑ 

n =2 

[
( 1 + μ) n b n −1 A n 

RF 
+

−( 1 + μ) n b −1 −n C n
RF

2 

A 0 
F 

− B 0 
F a 2 

+ 

∞ ∑ 

n =2 

(
( −1 + n ) n a −2+ n A n 

F 
+ ( 1 + n

+ ( 1 + n ) n a −2 −n C n 
F 

+ ( 1 − n
+ n + 2 μ + nμ) b n +1 B n 
RF 

 + n − 2 μ + nμ) b −n +1 D n 
RF 

]
 n ) a n B n F 

n ) a −n D n 
F 

)
cos nπ

2 

(8) 

where A 0 / F, B 0 / F, A n / F, B n / F, C n / F and D n / F are provided in Ap-

endix B (see Eq. (B12) ). LCCB solution of normalized stretchabil-

ty can be calculated using Eq. (6) , based on which the degener-

ted LCCB solution, that is, beam theory solution can be derived in

ppendix C , and can be given by 

 ̄

ε ) Beam = 

⎛ 

⎝ 

−12 + 12 ̄l 2 + ̄l 4 + 12 ̄l π + 2 ̄l 3 π + 3 π2 + 24 ̄l α + 4 ̄l 3 α + 12 πα + 12 α2 

+4 ̄l ̄m ̄ω 

2 + 

(
−12 + 12 ̄l 2 + ̄l 4 − 6 ̄l ( π + 2 α) + 2 ̄l 3 ( π + 2 α) 

)
cos 2 α

+3 
(
6 ̄l − π − 2 α + 2 ̄l 2 ( π + 2 α) 

)
sin 2 α + 2 ̄m πω̄ 

2 + 4 ̄m αω̄ 

2 

⎞ 

⎠ 

6 ̄ω 

(
m̄ + cos α − l̄ sin α

)(
2 ̄l + π + 2 α + 

(
−2 + ̄l 2 

)
cos α + 2 ̄l sin α

)
(9) 

Fig. 4 contains the comparison of three theory solutions for nor-

alized stretchability of specific kirigami structures according to

qs. (6), (8) and (9) . Generally speaking, results of LCCB theory

olution (and FEM) show good agreement with the elasticity the-

ry solution with high order series expansion in Fig. 4 a, such as

 max = 20 according to Eq. (8) , and both of them can accurately

ffer analytical solutions for a large range of ribbon width/radius

¯  . But the results of beam theory are not perfectly as precise,

hich is expected as the over-simplification of pure bending ef-

ect is not suitable to describe the stretchability of LCCB. For all

ases in Fig. 4 a, two important facts should be given: firstly, elas-

icity solution is series-expansion-term-dependent. With increas-

ng of n max the relative error between elasticity theory solution

nd LCCB theory solution decreases. For example, elasticity solu-

ion curves can gradually converge to certain exact solution from

 max = 2 to n max = 20. It will lead to an excessively large compu-

ations when we designate n max > 21, while the obtained results

ave a negligible error. Secondly, due to the nature of beam the-

ry it is not thought to provide a reliable estimate of stretchabil-

ty of kirigami structure with LCCB. According to Eq. (A22) in Ap-

endix A, y / r can be omitted only when y << r (i.e. slender beam)

nd the denominator of Eq. (A22) can degenerate into the second-

rea moment of cross section I . However, for the cases studied in

he current paper regarding LCCB, y and r are comparable, thus it

s difficult to predict the exact results of kirigami structures us-

ng beam theory. For example, in the case of ribbon width/radius

¯  = 0.8 as we can see from Fig. 4 a, the relative error between elas-

icity theory solution and beam theory solution would be as much
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Fig. 5. (a) Comparison of experimental data and analytical modeling based on LCCB theory for the first design variable l̄ and invariants α = 0, m̄ = 0.2 and ω̄ = 0.2. (b) and 

(c) Comparison of experimental data and analytical modeling by considering LCCB model for the first design variable α when invariants are l̄ = 2.5, m̄ = 0.2, ω̄ = 0.2 and l̄ = 0, 

m̄ = 1, ω̄ = 0.2. (d) The stress-strain curve of specific 3D-printed ribbon kirigami with α = 0, m̄ = 0.2, ω̄ = 0.2 and l̄ = 2. (For interpretation of the references to color in text, 

the reader is referred to the web version of this article.) 
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as 20.32%, while the LCCB theory solution compares favorably with

the elasticity theory solution. Also, this remarkable difference can

be found in Fig. 4 b, and we suggest that careful analytical model-

ing should be established to evaluate the key mechanical behav-

iors of ribbon kirigami with LCCB. While the comparison produces

a reliable and precise assessment, continuing researches will inves-

tigate a suite of assumptive strain extreme points and series con-

vergence tests. It can also be observed from the Fig. 4 b that long

arm effect is powerful to enhance the normalized stretchability of

kirigami structure, which could be nearly four orders of magnitude

more stretchability enhancement. In other words, long arm effect

can substantiality reduce the maximum tensile strain of kirigami

structure. This property could be exploited for applications, such

as stretchability modifications of intrinsic brittle materials under

harsh environments, which require a trade-off between physical

characteristics and intrinsic material properties. 

4.4. Experimental validation 

Fig. 5 a–c provide comparison of theoretical solutions obtained

from Eq. (6) and experimental results corresponding to different

geometries. For all 3D-printed kirigami structures in Fig. 5 , the

large thickness/width ratio is designed to provide in-plane defor-

mation and suppress the lateral buckling. The width of ribbon is

1 mm and the thickness of ribbon kirigami is 10 mm. Based on the

nature of design space, Fig. 5 a plots the effect of the first design

variable l̄ on the reciprocal of normalized stretchability 1 / ̄ε , while
he corresponding three invariants are α = 0, m̄ = 0.2 and ω̄ = 0.2,

espectively. In particular, for the case of α = 0, m̄ = 0.2, ω̄ = 0.2 and

 ̄= 2, Fig. 5 d shows the experimental stress-strain curve and the

ptical images of structural shapes at different strain levels. The

train field distribution in Fig. 5 d obviously shows that the maxi-

um strain in ribbon kirigami occurs at the inner arc crest, which

s always the break location of 3D printed ribbon kirigami under

niaxial tension. Fig. 5 b and c present the results of 1 / ̄ε from ana-

ytical solution, as a function of the first design variables α, and the

nvariants are separately designated as l̄ = 2.5, m̄ = 0.2, ω̄ = 0.2 and

 ̄= 0, m̄ = 1, ω̄ = 0.2. Over the whole domain, we find the recipro-

al of normalized stretchability for experimental specimens (black

ectangle, Fig. 5 a–c inset), is in surprisingly good agreement with

ur theoretical prediction, confirming that the analytical model in

urrent research by considering LCCB model is highly effective to

rovide insights into the rational design and practice of planar rib-

on kirigami. However, there is always room for improvement. Due

o non-dimensionalization nature, expressions with regard to the

ey mechanics indexes should be scale-scalable. To trigger further

nvestigation and validate the scalability of analytical modeling,

olecular dynamics (MD) simulation experiments for low dimen-

ional silicon kirigami are performed in Appendix D . It is seen from

ig. D1 that the results from MD simulation is essentially identi-

al to the analytical solution, but much work should be devoted to

ccuracy enhancement of analytical modeling for low dimensional

ilicon kirigami. The authors hope to answer this question in the

ear future. 
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Fig. 6. (a) Distribution of the reciprocal of normalized stretchability for the first design variable ω̄ and l̄ , and the reciprocal of normalized stretchability is the function of 

αmax and m̄ min . (b) and (c) Distribution of αmax and m̄ min for the first design variable ω̄ and l̄ , the optimization results can be calculated numerically based on the “number 

shape union” technology. (d) The optimal kirigami shape with the maximum normalized stretchability under geometry constraints when t = 15 and ( ̄ω , l̄ , α, m̄ ) = (0.834, 

4.736, 0.122, 1). (For interpretation of the references to color in text, the reader is referred to the web version of this article.) 
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. Optimization 

This paper has highlighted three facts associated with impera-

ive optimization of kirigami structures under geometry constraint

onditions: firstly, the analytical results of normalized stiffness and

ormalized stretchability indicate that geometry-constrained and

on-overlapped conditions are intrinsic according to Eqs. (5) and

6) . And not all kirigami shapes are acceptable within the scope of

ur present study. Secondly, the object of current research is mod-

led by considering one-directional periodic boundary condition.

hus the non-overlapped condition should be applied between the

djacent unit cells. Thirdly, while the larger l̄ and the smaller ω̄ 

ill generate larger normalized stretchability, sometimes it is im-

ossible to achieve the maximum length or the minimum width

f ribbon kirigami because of technical bottlenecks (such as reso-

ution restriction of photolithography Widlund et al., 2014 ). More-

ver, novel physical devices in relation to kirigami configurations,

s mentioned above, also need geometry constraints to maintain

heir device performance. As a consequence of requirement for
heory and application, based on the aforementioned three facts

his section aims to achieve the maximum normalized stretchabil-

ty under three geometry constraints. 

By revisiting the geometry parameters in Fig. 1 a and b, we find

hat three key parameters with regard to geometry constraints are

ot defined ( L 1 , L 2 and L 3 ). Here we start by describing the first ge-

metry parameter: the distance of the outer arc crest between two

inge joints L 1 . Obviously, the magnitude of L 1 is associated with

he first non-overlapped condition. It is apparent that L 1 should be

onnegative. By applying the similar non-dimensionalization pro-

ess, L̄ 1 can be expressed as L 1 / R . Then, according to the non-

egativity condition, the definition of L̄ 1 can be given in terms of

he three independent dimensionless parameters ( ̄ω , l̄ and α), as

ollows: 

¯
 1 = 1 − ω̄ 

2 

−
[(

1 − ω̄ 

2 

)
( 1 − cos α) + ̄l sin α+ 

ω̄ 

2 

( 1 −cos α) 

]
≥ 0 

(10) 
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L 2 represents the relationships between two adjacent unit cells,

which is in relation to the second non-overlapped condition. If we

define L̄ 2 as L 2 / R , the dimensionless L̄ 2 can be related to four inde-

pendent dimensionless parameters ( ̄ω , l̄ , m̄ and α) by: 

L̄ 2 = m̄ −
[

l̄ sin α + ( 1 − cos α) + 

ω̄ 

2 

]
≥ 0 (11)

Based on Eqs. (10) and (11) , the critical values of α and m̄ with

respect to geometry non-overlap can be determined using the fol-

lowing equations: 

αmax = 2 arctan 

( 

−2 ̄l + 

√ 

4 ̄l 2 + 4 − ω̄ 

2 

2 + ω̄ 

) 

(12)

m̄ min = l̄ sin α + ( 1 − cos α) + 

ω̄ 

2 

(13)

Then next step is to determine the third condition, that is, ge-

ometry constraint condition. According to the third fact, we need

to designate a specific in-plane breadth to generate the kirigami

motifs. Applying the normalization method, the dimensionless in-

plane breadth L̄ 3 = L 3 /R can be expressed by 

L̄ 3 = 2 

(
1 + 

ω̄ 

2 

+ sin α + ̄l cos α

)
= t ̄ω (14)

where t is the scaling factor. If we designate t = 15, it represents

that the in-plane breadth of ribbon kirigami L 3 is 15 times larger

than the ribbon width ω. Then combining the Eqs. (12), (13),

(14) and (6) , the optimization problem in regard to the maximum

normalized stretchability under geometry constraints can be solved

by using the “number shape union” technology. Concretely speak-

ing, Eqs. (12) and (13) should be firstly substituted into Eq. (6) ,

and we can obtain the normalized stretchability ε̄ as the function

of αmax and m̄ min by 

ε̄ = g ( αmax , m̄ min ) (15)

where the reciprocal of Eq. (15) is plotted in Fig. 6 a. Both ω̄ and l̄

are designated as the first design variables and defined in the de-

sign space of kirigami structures. Similarly, the color bar represents

the value of 1 / ̄ε . Then with the aid of Eq. (14) , ( ̄ω , ̄l ) in the case of

the minimum value ( 1 / ̄ε ) min (i.e. ( ̄ε ) max ) can be determined and

represented by the black dots, as we can see in Fig. 6 a. This process

can be realized by utilizing the commercial software MATLAB or

open-source software Anaconda (Python). With the obtained ( ̄ω , l̄ )

in hand, we can shift the results represented by black dots into the

functional drawing districts of Eq. (12) and Eq. (13) , and the color
ars in Fig. 6 b and c separately represent the value of αmax and

¯  min . Thus, the corresponding α and m̄ can be determined accord-

ng to Fig. 6 b and Fig. 6 c, respectively. By collecting the relevant

arameters t and ( ̄ω , l̄ , α, m̄ ), the maximum normalized stretcha-

ility under geometry constraints can be finally achieved. We in-

estigate the cases when t is from 10 to 30 as shown in Fig. 6 a–c.

n the case of t = 15, the optimization results can be calculated nu-

erically and given by ( ̄ω , l̄ , α, m̄ ) = (0.834, 4.736, 0.122, 1), which

he optimal shape of ribbon kirigami is illustrated in Fig. 6 d. While

he “number shape union” technology is not as perfect as the La-

rangian multiplier method, because of its simplicity, this can also

ccurately provide a result to guide the design of ribbon kirigami. 

. Conclusions 

This paper has, through theoretical analysis and FEM, for the

rst time, systematically revealed geometry-dependent effect pat-

erns of four dimensionless parameters on the normalized stiffness

nd stretchability of planar ribbon kirigami. Excellent accuracy and

calability of analytical solution by considering LCCB model are

omprehensively verified by combining the tensile experiments,

lasticity theories, beam theories, plane strain FEM and MD sim-

lations. This study shows that the smaller normalized stiffness

nd the larger normalized stretchability, except for some counter-

ntuitive expectations, can be realized by the larger l̄ , the smaller

¯  , the smaller m̄ and the larger α. Not all kirigami configura-

ions are conducive to the enhancement of normalized stretcha-

ility while the corresponding normalized stiffness decreases. Re-

arkable long arm effect can, in some case, carry tremendous po-

ential which, is surprising for enhanced normalized stretchabil-

ty and reduced normalized stiffness by several orders of magni-

ude. Based on three facts associated with geometry constraints,

he maximum normalized stretchability can be obtained based on

he “number shape union” technology. In brief, this paper pro-

ides a foundational research to guide the kirigami design in future

pplication. 
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k (A1) 

internal forces in the curved beam can be calculated by {
(A2) 

{
(A3) 

N (A4) 

w centroid, the internal shear force, and the internal moment of the cross 

s lized displacement, and determination of boundary condition for θ = 0 

i

(A5) 

w

U (A6) 

a

U (A7) 

w rgy. Then the generalized displacements of arm and arc with respect to 

E

(A8) 

(A9) 

9) can be given in terms of unit thickness: 

A (A10) 

w  Young’s modulus, μ̄ is Poisson’s ratio, I is the second-area moment of 

c l axis. 

following equation for solving M 0 : 

M
 α) 
]

(A11) 

w n of normalized stiffness, the load-displacement relation needs to be 

d tion has to be performed. Here, the Moore Integral method is adopted 

t

u (A12) 

w

δ
 arc ̄V arc 

GA 

)
d s 1 (A13) 

δ (A14) 

 new forms by combining the Eqs. (A2), (A3) and (A11) . N̄ arm 

, V̄ arm 

, 

M hen F = 1. In consideration of load-displacement relation in the case 

o

(A15) 
ppendix A 

Normalized stiffness is calculated using the following relationsh

¯
 e f f = 

F 

F ′ ·
u 

′ 
app 

u app 

According to free-body diagram and coordinates in Fig. 1 b, the 
 

M arc = 

F R 
2 ( 1 − cos θ ) − M 0 

V arc = 

F 
2 

sin θ
N arc = 

F 
2 

cos θ
 

M arm 

= 

F 
2 [ R ( 1 + sin α) + s cos α] − M 0 

V arm 

= 

F 
2 

cos α
N arm 

= − F 
2 

sin α

 connection = F 

here N, V and M are respectively the internal normal force at the 

ection. Then, Castigliano’s theorem is designated to obtain genera

s according to Fig. 1 a: 

∂U 

∂ M 0 

= 

∂ ( U arc + U arm 

) 

∂ M 0 

= 0 

here U is the elastic deformation energy. As to arc section 

 arc = 

∫ ( π2 + α) R 

0 

(
M 

2 
arc 

2 ESR 

+ 

M arc N arc 

EAR 

+ 

N 

2 
arc 

2 EA 

+ κ
V 

2 
arc 

2 GA 

)
d s 1 

s to arm section 

 arm 

= 

∫ l 

0 

(
N 

2 
arm 

2 EA 

+ κ
V 

2 
arm 

2 GA 

+ 

M 

2 
arm 

2 EI 

)
d s 2 

here G is shear modulus, κ is correction coefficient for strain ene

q. (A5) can be calculated from Eqs. (A6) and (A7) : 

∂ U arc 

∂ M 0 

= 

1 

4 AES 
[ 2 F ( AR − S ) cos α − A ( π + 2 α) ( F R − 2 M 0 ) ] 

∂ U arm 

∂ M 0 

= 

Il 

4 E 
[ F ( l cos α + 2 R ( 1 + sin α) ) − 4 M 0 ] 

Expression of the corresponding parameters from Eqs. (A6) to (A

 = ω, E = 

Ē 

1 − μ̄2 
, I = 

ω 

3 

12 

, S = ω 

(
R − ω 

ln 

2 R + ω 
2 R −ω 

)
here A is the area of cross section, E is plane strain modulus, Ē is

ross section, S is the static moment of the cross section on neutra

Then the insertion of Eqs. (A8) and (A9) into Eq. (A5) gives the 

 0 = 

F 
[(

−2 AIR + A l 2 S + 2 IS 
)

cos α + AR ( Iπ + 2 lS + 2 Iα + 2 lS sin

2 A [ 2 lS + I ( π + 2 α) ] 

here A, I and S are given in Eq. (A10) . To establish the equatio

etermined. Besides, one more step of re-writing the internal equa

o determine the applied displacement: 

 app = 2 δarc + 2 δarm 

+ 

F m 

EA 

here 

arc = 

∫ ( α+ π2 ) R 

0 

(
M arc M̄ arc 

ESR 

+ 

N arc M̄ arc 

EAR 

+ 

M arc ̄N arc 

EAR 

+ 

N arc ̄N arc 

EA 

+ κ
V

arm 

= 

∫ l 

0 

(
N arm ̄

N arm 

EA 

+ κ
V arm ̄

V arm 

GA 

+ 

M arm 

M̄ arm 

EI 

)
d s 2 

We note that the results of M arm 

and M arc are corresponding
¯
 arm 

, N̄ arc , V̄ arc and M̄ arc are internal forces of the curved beam w

f α = −π /2, for the straight beam, we get 

u 

′ 
app 

′ = 

L 
F 2 EA 
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f Fig. 1 a, it can be determined as 

(A16) 

be then obtained from Eqs. (A12), (A15), (A16) and (A1) : 

ω̄ 

2 + 696 J 2 l̄ πω̄ 

2 

 ̄ω 

4 + 80 J ̄ω 

4 − 40 J 2 ω̄ 

4 

 

4 + 160 J m̄ αω̄ 

4 + 40 παω̄ 

4 

 2 αZ 3 

⎤ 

⎥ ⎦ 

(A17) 

(A18-a) 

(A18-b) 

 2 α) ̄ω 

2 
))

(A18-c) 

(A18-d) 

etermined by: 

(A19) 

efined as 

(A20) 

h the aid of Eq. (A19) , aim of the next step is to obtain the equation of 

re bending and axial tension are the major contributors to the variation 

. Based on the assumption that normal stress is equal to zero between 

rily written as 

(A21) 

 be expressed in terms of the moment ( M ) as 

(A22) 

oop stress in LCCB can be calculated according to Eq. (21) as 

(A23) 

(A24) 

at the inner arc crest, which is acceptable based on Widlund et al. 

e maximum tensile strain can be given using the following relation- 

(A25) 

tretchability can be given by: 

 

2 + 696 J 2 l̄ πω̄ 

2 

 + 80 J ̄ω 

4 − 40 J 2 ω̄ 

4 

 160 J m̄ αω̄ 

4 + 40 παω̄ 

4 

Z 3 

⎤ 

⎥ ⎦ 

− Z 5 sin α
] (A26) 

re respectively given as follows: 

(A27-a) 

(A27-b) 

A17) and (A26) , respectively. 
where L is the length of the unit cell, together with the revisiting o

L = 2 ( R cos α − l sin α + m ) 

With the function of u app in hand, the normalized stiffness can 

k̄ e f f = 

80 J ̄ω 

2 
(
24 J ̄l + ( π + 2 α) ̄ω 

2 
)
Z 1 ⎡ 

⎢ ⎣ 

4 80 J 2 l̄ 4 + 4 80 J ̄l 2 ω̄ 

2 + 1872 J 2 l̄ 2 ω̄ 

2 + 1920 J 2 l̄ m̄ ̄ω 

2 + 4 80 J ̄l π

+80 J ̄l 3 πω̄ 

2 + 960 J ̄l αω̄ 

2 + 1392 J 2 l̄ αω̄ 

2 + 160 J ̄l 3 αω̄ 

2 − 40

+98 J ̄l πω̄ 

4 + 80 J m̄ πω̄ 

4 + 10 π2 ω̄ 

4 + 29 J π2 ω̄ 

4 + 196 J ̄l αω̄
+116 Jπαω̄ 

4 + 40 α2 ω̄ 

4 + 116 J α2 ω̄ 

4 + 2 cos 2 αZ 2 + ω̄ 

2 sin

where 

Z 1 = 

(
m̄ + cos α − l̄ sin α

)
Z 2 = 

(
−20 ̄ω 

4 + 40 ̄ω 

2 + 4 J 2 
(
60 ̄l 4 + 114 ̄l 2 ω̄ 

2 − 5 ̄ω 

4 
)

+ J ̄ω 

2 
(
240 ̄l 2 + 40 ̄l 3 ( π + 2 α) + ̄l ( π + 2 α) 

(
29 ̄ω 

2 − 120 

)))
Z 3 = 

(
216 J 2 l̄ − 10 ( π + 2 α) ̄ω 

2 + J 
(
720 ̄l + 240 ̄l 2 ( π + 2 α) + 49 ( π +

J = 1 − ω̄ 

ln 

2+ ̄ω 
2 −ω̄ 

Another key mechanics index is normalized stretchability, it is d

ε̄ = 

ε f app 

ε f mat 

= 

ε app 

ε max 

For normalized stretchability in Eq. (A19) , the applied strain is d

ε app = 

u app 

L/ 2 

where u app and L are given in Eqs. (A12) and (A16) , separately. Wit

εmax . For a given large curvature curved beam (LCCB), effects of pu

of hoop stress. It is helpful to understand the pure bending of LCCB

the longitudinal fibers, the stress of cross section can be prelimina

σ = E 
1 

1 + 

r 
y 

δ( dθ ) 

dθ

By using the equilibrium equation M = ∫ A y σdA = 0, the stress can

σ = 

My (
1 + 

y 
r 

) ∫ 
A 

y 2 

( 1+ y r ) 
dA 

where r is the curvature radius of the neutral axis. Therefore, the h

σarc = 

M arc y (
1 + 

y 
r 

) ∫ 
A 

y 2 

( 1+ y r ) 
dA 

+ 

N arc 

A 

where 

r = R ( 1 − J ) 

As the maximum strain in kirigami structure always occurs 

(2014) and Zhang et al. (2013) . Applying the physical equation, th

ship: 

ε max = 

1 

E 

( 

−M 0 

(
R − ω 

2 
− r 
)

S 
(
R − ω 

2 

) + 

F 

2 A 

) 

Finally, combining Eqs. (A19), (A20) and (A25) , the normalized s

ε̄ = 

⎡ 

⎢ ⎣ 

4 80 J 2 l̄ 4 + 4 80 J ̄l 2 ω̄ 

2 + 1872 J 2 l̄ 2 ω̄ 

2 + 1920 J 2 l̄ m̄ ̄ω 

2 + 4 80 J ̄l πω̄

+80 J ̄l 3 πω̄ 

2 + 960 J ̄l αω̄ 

2 + 1392 J 2 l̄ αω̄ 

2 + 160 J ̄l 3 αω̄ 

2 − 40 ̄ω 

4

+98 J ̄l πω̄ 

4 + 80 J m̄ πω̄ 

4 + 10 π2 ω̄ 

4 + 29 J π2 ω̄ 

4 + 196 J ̄l αω̄ 

4 +
+116 Jπαω̄ 

4 + 40 α2 ω̄ 

4 + 116 J α2 ω̄ 

4 + 2 cos 2 αZ 2 + ω̄ 

2 sin 2 α
40 ̄ω 2 Z 1 

2 −ω̄ 

[
( 1 − J ) ̄ω 

(
24 J ̄l + ( π + 2 α) ̄ω 

2 
)

− Z 4 cos α

where Z 1 , Z 2 , Z 3 and J are given according to Eq. (A18), Z 4 and Z 5 a

Z 4 = 2 ( 2 J − ω̄ ) 
(
−ω̄ 

2 + J 
(
6 ̄l 2 + ω̄ 

2 
))

Z 5 = 24 J ̄l ( 2 J − ω̄ ) 

It is noteworthy that the Eqs. (5) and (6) are the same as Eqs. (
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A

y ( ̄l = 0, m̄ = 0, α = 0) can be described as the problem of a stretching 

c meter, as shown in Fig. 4 a. Polar coordinate system is designated to 

s stress function ( Timoshenko and Goodier, 1970 ), stress function can be 

s

φ (B1) 

w erification, Eq. (B1) satisfies the single-valued condition of displacement 

a

lated using the following relations: ⎧⎨
⎩ (B2) 

itten in terms of the undetermined constants as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 −n C n + ( 2 − n ) r 1 −n D n 

))

 

r n B n + ( 1 + n ) n r −2 −n C n 
)

 

r 1 −n D n 

)
(B3) 

d to the small range, and the corresponding angle is 
. Therefore, the 

a

F (B4) 

e the calculation of F ( θ ): 

F (B5) 

w

a (B6) 

a (B7) 

F (B8) 

∑
(B9) 

 to determine the unknown constants based on the following boundary 

c⎧⎪⎨
⎪⎩ (B10) 
ppendix B 

The elasticity solution we derived here for the specific geometr

ircular ribbon with two opposite and equal forces along the dia

olve the stress and strain field. According to the principle of Airy 

tructured as follows: 

= 

∞ ∑ 

n =2 

(
A n r 

n + B n r 
n +2 + C n r 

−n + D n r 
−n +2 

)
cos nθ + A 0 r 

2 + B 0 ln r 

here A n , B n , C n , D n , A 0 and B 0 are undetermined constants. After v

nd compatible equation ∇ 

4 φ = ( ∂ 
2 

∂ r 2 
+ 

1 
r 

∂ 
∂r 

+ 

1 
r 2 

∂ 2 

∂ θ2 ) 
2 = 0 . 

For polar coordinate system, the stress components can be calcu

 

 

 

σr = 

1 
r 

∂φ
∂r 

+ 

1 
r 2 

∂ 2 φ
∂ θ2 

σθ = 

∂ 2 φ
∂ r 2 

τrθ = 

1 
r 2 

∂φ
∂θ

− 1 
r 

∂ 2 φ
∂ r∂ θ

By substituting Eq. (B1) into Eq. (B2) , the stress field can be wr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

σr = 

1 
r 

(
2 r A 0 + 

B 0 
r 

+ 

∞ ∑ 

n =2 

cos nθ
(
n r −1+ n A n + ( 2 + n ) r 1+ n B n − n r −1

+ 

1 
r 2 

∞ ∑ 

n =2 

−n 

2 cos nθ
(
r n A n + r 2+ n B n + r −n C n + r 2 −n D n 

)
σθ = 2 A 0 − B 0 

r 2 
+ 

∞ ∑ 

n =2 

cos nθ

(
( −1 + n ) n r −2+ n A n + ( 1 + n ) ( 2 + n )
+ ( 1 − n ) ( 2 − n ) r −n D n 

τrθ = 

1 
r 2 

∞ ∑ 

n =2 

−n sin nθ
(
r n A n + r 2+ n B n + r −n C n + r 2 −n D n 

)
− 1 

r 

∞ ∑ 

n =2 

−n sin nθ
(
n r −1+ n A n + ( 2 + n ) r 1+ n B n − n r −1 −n C n + ( 2 − n )

Now, we suppose that two opposite and equal forces are applie

pplied force can be expressed using piecewise function as 

 ( θ ) = 

{
F 

2 b

−
 ≤ θ ≤ 
, π − 
 ≤ θ ≤ π + 


0 
 < θ < π − 
, π + 
 < θ < 2 π − 


Next, Fourier series expansion technology is used here to achiev

 ( θ ) = 

a 0 
2 

+ 

∞ ∑ 

i =1 

a i cos 2 iθ = 

a 0 
2 

+ 

∞ ∑ 

i =1 
n =2 i 

a i cos nθ

here 

 0 = 

2 

π

∫ π
2 

− π
2 

F 

2 b

dθ = 

2 F 

πb 

 i = 

2 

π

∫ π
2 

− π
2 

F 

2 b

cos nθdθ = 

2 F sin n 


πbn 


Thus, combining the Eqs. (B5), (B6) and (B7) , we obtain 

 ( θ ) = 

F 

πb 
+ 

2 F 

πb 

∞ ∑ 

n =2 

sin n 


n 

cos nθ

Applying lim 


→ 0 

sin n 

n 
 = 1 , gives 

∞ 

 

n =2 

cos nθ = −1 

2 

( θ � = 0 , θ − π � = 0 ) 

So far, the preparatory work has be finished, and the next step is

onditions: 
 

 

 

 

 

r = a, σr = 0 

r = a, τrθ = 0 

r = b, σr = F ( θ ) 
r = b, τrθ = 0 
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the following relationships for solving the undetermined constants: 

 D n = 0 

 D n = 0 

(B11) 

(B12) 

 − a 2 n b 4+2 n n 

2 (B13) 

lasticity theory are achieved according to Eqs. (B3) and (B12) , and the 

-displacement relation. Here, with the aid of generalized Hooke’s law, 

(B14) 

n will be provided to solve the strain field: 

sin nθ (B15) 

 

n +1 B n 

 +1 D n 

⎤ 

⎥ ⎦ 

cos nθ

⎞ 

⎟ ⎠ 

+ p ( θ ) (B16) 

(B17) 

qs. (B16) and (B17) into Eq. (B15) , gives 

(B18) 

 

( r ) = Mr and p ( θ ) = H sin θ + K cos θ . By utilizing the boundary conditions 

finally written as 

 

r n +1 B n 

n +1 D n 

⎤ 

⎥ ⎦ 

cos nθ

⎞ 

⎟ ⎠ 

(B19) 
Then the substitution of Eqs. (B3) and (B8) into Eq. (B10) gives ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 A 0 + 

B 0 
a 2 

= 0 

( −1 + n ) n a −2+ n A n + ( 1 + n ) ( −2 + n ) a n B n + ( 1 + n ) n a −2 −n C n 
+ ( −1 + n ) ( 2 + n ) a −n D n = 0 

( −1 + n ) a −2+ n A n + ( 1 + n ) a n B n − ( 1 + n ) a −2 −n C n − ( −1 + n ) a −n

2 A 0 + 

B 0 
b 2 

= 

F 
πb 

( −1 + n ) n b −2+ n A n + ( 1 + n ) ( −2 + n ) b n B n + ( 1 + n ) n b −2 −n C n 
+ ( −1 + n ) ( 2 + n ) b −n D n = − 2 F 

πb 

( −1 + n ) b −2+ n A n + ( 1 + n ) b n B n − ( 1 + n ) b −2 −n C n − ( −1 + n ) b −n

This yields ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

A 0 /F = 

b 

2 π( −a 2 + b 2 ) 
B 0 /F = − a 2 b 

π( −a 2 + b 2 ) 
A n /F = − a 2 b 1+ n ( −a 2 n b 2 + b 2+2 n −a 2+2 n n + a 2 n b 2 n ) 

( −1+ n ) πξ

B n /F = 

b 1+ n ( −a 2+2 n + a 2 b 2 n −a 2+2 n n + a 2 n b 2 n ) 
( 1+ n ) πξ

C n /F = 

a 2+2 n b 1+ n ( a 2 n b 2 −b 2+2 n + a 2 b 2 n n −b 2+2 n n ) 
( 1+ n ) πξ

D n /F = − a 2 n b 1+ n ( a 2+2 n −a 2 b 2 n + a 2 b 2 n n −b 2+2 n n ) 
( −1+ n ) πξ

where 

ξ = a 2+4 n b 2 − 2 a 2+2 n b 2+2 n + a 2 b 2+4 n − a 4+2 n b 2 n n 

2 + 2 a 2+2 n b 2+2 n n 

2

Now, fully analytical solutions for the stress components from e

normalized stretchability will be derived after we obtain the strain

we have ⎧ ⎪ ⎨ 

⎪ ⎩ 

∂u 
∂r 

= ε r = 

1 
E ( σr − μσθ ) 

ε θ = 

1 
E ( σθ − μσr ) 

∂v 
∂θ

= r ε θ − u 

γrθ = 

2 ( 1+ μ) 
E 

τrθ = 

1 
r 

∂u 
∂θ

+ 

∂v 
∂r 

− v 
r 

Combining the Eqs. (B3), (B12) and (B14) , the following equatio

1 

r 

∂u 

∂θ
+ 

∂v 
∂r 

− v 
r 

= 

1 

E 

∞ ∑ 

n =2 

[
2 n ( n − 1 ) ( 1 + μ) r n −2 A n + 2 n ( 1 + n ) ( 1 + μ) r n B n 

−2 n ( 1 + n ) ( 1 + μ) r −2 −n C n − 2 n ( n − 1 ) ( 1 + μ) r −n D n 

]

+ 

1 

r 

∂ p ( θ ) 

∂θ
+ 

∂ p 1 ( r ) 

∂r 
+ 

1 

r 

∫ 
p ( θ ) dθ − 1 

r 
p 1 ( r ) 

and the strain components can be expressed as follows: 

u = 

1 

E 

⎛ 

⎜ ⎝ 

2 A 0 ( 1 − μ) r − B 0 

r 
( 1 + μ) −

∞ ∑ 

n =2 

⎡ 

⎢ ⎣ 

( 1 + μ) n r n −1 A n 

+ ( −2 + n + 2 μ + nμ) r
−( 1 + μ) n r −1 −n C n 
−( 2 + n − 2 μ + nμ) r −n

v = 

1 

E 

∞ ∑ 

n =2 

⎡ 

⎢ ⎣ 

( 1 + μ) n r n −1 A n 

+ ( 4 + n + nμ) r n +1 B n 

+ ( 1 + μ) n r −1 −n C n 
+ ( −4 + n + nμ) r −n +1 D n 

⎤ 

⎥ ⎦ 

sin nθ −
∫ 

p ( θ ) dθ + p 1 ( r ) 

where A n , B n , C n , D n are given in Eq. (B12) . Then substituting the E

1 

r 

∂ p ( θ ) 

∂θ
+ 

∂ p 1 ( r ) 

∂r 
+ 

1 

r 

∫ 
p ( θ ) dθ − 1 

r 
p 1 ( r ) = 0 

where p ( θ ) and p 1 ( r ) are unknown functions. Next, we designate p 1
θ = 0, v = 0 and θ = 

π
2 , v = 0 , ∂v 

∂r 
= 0 , the strain components can be ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

u = 

1 
E 

⎛ 

⎜ ⎝ 

2 A 0 ( 1 − μ) r − B 0 
r ( 1 + μ) −

∞ ∑ 

n =2 

⎡ 

⎢ ⎣ 

( 1 + μ) n r n −1 A n 

+ ( −2 + n + 2 μ + nμ)
−( 1 + μ) n r −1 −n C n 
−( 2 + n − 2 μ + nμ) r −

v = 

1 
E 

∞ ∑ 

n =2 

⎡ 

⎢ ⎣ 

( 1 + μ) n r n −1 A n 

+ ( 4 + n + nμ) r n +1 B n 

+ ( 1 + μ) n r −1 −n C n 
+ ( −4 + n + nμ) r −n +1 D n 

⎤ 

⎥ ⎦ 

sin nθ
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n Widlund et al. (2014) and Zhang et al. (2013) , the applied strain εapp 

a  following relationships: 

ε

) b n +1 B n 

 

−n +1 D n 

⎤ 

⎥ ⎦ 

⎞ 

⎟ ⎠ 

(B20) 

ε
 B n 
n D n 

)
cos 

nπ

2 

) 

(B21) 

ation for solving the normalized stretchability with respect to elasticity 

t

ε

+ 2 μ + nμ) b n +1 B n 
RF 

 − 2 μ + nμ) b −n +1 D n 
RF 

]
 

a n B n 
F 

 

a −n D n 
F 

)
cos nπ

2 

(B22) 

w  in Eq. (B12) . Lastly, we designate the value of n max and corresponding 

n . It is important to note that Eq. (B22) is the same as Eq. (8) . 

A

f beam theory can be obtained, that is, if we designate y / r << 1, stress 

c  has been degenerated into the second-area moment of cross section I . 

termine the normalized stretchability as compared with that of LCCB 

t  M 0 should be determined. According to the free-body diagram, the 

i Then, based on internal force equations, elastic deformation energy for 

a

U (C1) 

U (C2) 

w Castigliano’s theorem and the boundary condition, the following equa- 

t

(C3) 

M (C4) 

llows ⎧⎪⎪⎨
⎪⎪⎩ (C5) 

⎧⎪⎪⎨
⎪⎪⎩ (C6) 

N (C7) 

tion can be obtained according to Eq. (C8) : 

u
(C8) 
With the aid of the assumption of strain extreme point based o

nd the maximum tensile strain εmax can next calculated using the

 app = 

1 
E 

⎛ 

⎜ ⎝ 

2 A 0 ( 1 − μ) b − B 0 
b ( 1 + μ) −

∞ ∑ 

n =2 

⎡ 

⎢ ⎣ 

( 1 + μ) n b n −1 A n 

+ ( −2 + n + 2 μ + nμ
−( 1 + μ) n b −1 −n C n 
−( 2 + n − 2 μ + nμ) b

R cos α − l sin α + m 

 max = 

1 

E 

( 

2 A 0 − B 0 

a 2 
+ 

∞ ∑ 

n =2 

(
( −1 + n ) n a −2+ n A n + ( 1 + n ) ( 2 + n ) a n

+ ( 1 + n ) n a −2 −n C n + ( 1 − n ) ( 2 − n ) a −

Substitution of εapp and εmax into Eq. (2) , gives the following equ

heory 

¯ = 

2 

A 0 
F ( 1 − μ) b R 

− B 0 
F bR ( 1 + μ) −

∞ ∑ 

n =2 

[
( 1 + μ) n b n −1 A n 

RF 
+ ( −2 + n 

−( 1 + μ) n b −1 −n C n 
RF 

− ( 2 + n

2 

A 0 
F 

− B 0 
F a 2 

+ 

∞ ∑ 

n =2 

(
( −1 + n ) n a −2+ n A n 

F 
+ ( 1 + n ) ( 2 + n )

+ ( 1 + n ) n a −2 −n C n 
F 

+ ( 1 − n ) ( 2 − n )

here μ = μ̄/ ( 1 − μ̄) , A n / F, B n / F, C n / F, D n / F, A 0 / F and B 0 / F are given

ormalized stretchability can be obtained by series expansion form

ppendix C 

Based on LCCB theory derived in Appendix A , the framework o

an be expressed as σ = My / ∫ A y 2 dA . Thus, the denominator ∫ A y 2 dA

For the sake of simplicity, we utilize the same methods to de

heory in the following derivation. Firstly, the unknown moment

nternal forces are obtained and given in Eqs. (A2), (A3) and (A4) . 

rm section and arc section can be calculated by: 

 arc = 

∫ ( α+ π2 ) R 

0 

(
N 

2 
arm 

2 EA 

+ κ
V 

2 
arm 

2 GA 

+ 

M 

2 
arm 

2 EI 

)
d s 1 

 arm 

= 

∫ l 

0 

(
N 

2 
arm 

2 EA 

+ κ
V 

2 
arm 

2 GA 

+ 

M 

2 
arm 

2 EI 

)
d s 2 

here κ is correction coefficient of strain energy. According to the 

ion can be used to solve M 0 : 

∂ ( U arc + U arm 

) 

∂ M 0 

= 0 

Substituting Eqs. (C1), (C2) into Eq. (C3) , gives 

 0 = 

F 
((

l 2 − 2 R 

2 
)

cos α + R ( 2 l + πR + 2 Rα + 2 l sin α) 
)

4 l + 2 R ( π + 2 α) 

Next, we re-write the internal equations based on Eq. (C4) as fo
 

 

 

 

 

 

 

M arc = 

F R 
2 ( 1 − cos θ ) 

− F ( ( l 2 −2 R 2 ) cos α+ R ( 2 l+ πR +2 Rα+2 l sin α) ) 
4 l+2 R ( π+2 α) 

V arc = 

F 
2 

sin θ
N arc = 

F 
2 

cos θ

 

 

 

 

 

 

 

M arm 

= 

F 
2 [ R ( 1 + sin α) + s cos α] 

− F ( ( l 2 −2 R 2 ) cos α+ R ( 2 l+ πR +2 Rα+2 l sin α) ) 
4 l+2 R ( π+2 α) 

V arm 

= 

F 
2 

cos α
N arm 

= − F 
2 

sin α

 connection = F 

By using the Moore Integral method, the load-displacement rela

 app = 2 

(∫ l 
0 

(
N arm ̄N arm 

EA 
+ κ V arm ̄V arm 

GA 
+ 

M arm ̄M arm 

EI 

)
d s 2 

)
+ 2 

(∫ ( α+ π2 ) R 
0 

(
N arc ̄N arc 

EA 
+ κ V arc ̄V arc 

GA 
+ 

M arc M̄ arc 

EI 

)
d s 1 

)
+ 

F m 

EA 
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where N̄ arm 

, V̄ arm 

, M̄ arm 

, N̄ arc , V̄ arc and M̄ arc are corresponding intern

strain can be calculated. Moreover, the maximum strain can be giv

ε max = 

(−M 0 y 

EI 

)∣∣∣y = − ω 
2 

θ=0 

Based on Eq. (2) or Eq. (A19) , the normalized stretchability from

can be calculated using the following equation: 

ε̄ = 

⎛ 

⎝ 

−12 + 12 ̄l 2 + ̄l 4 + 12 ̄l π + 2 ̄l 3 π + 3 π2 + 24 ̄l α + 4 ̄l 3 α + 12 π

+4 ̄l m̄ ̄ω 

2 + 

(
−12 + 12 ̄l 2 + ̄l 4 − 6 ̄l ( π + 2 α) + 2 ̄l 3 ( π + 2 α) 

)
c

+3 

(
6 ̄l − π − 2 α + 2 ̄l 2 ( π + 2 α) 

)
sin 2 α + 2 ̄m πω̄ 

2 + 4 ̄m αω̄

6 ̄ω 

(
m̄ + cos α − l̄ sin α

)(
2 ̄l + π + 2 α + 

(
−2 + ̄l 2 

)
cos α + 

which the Eq. (9) is the same as Eq. (C10) . 

Appendix D 

Because of non-dimensionalization nature, expression of the

macrostructures via finite element methods, extensive atomistic s

ing MD engine LAMMPS ( Plimpton, 1995 ). For low dimension silic

Si-Si atoms interactions. Velocity-Verlet algorithm is applied to calc

Initial equilibrium of the system is relaxed at 0.1 K for 5 ps with th

(0.02 nm/ps) is applied on the right end of silicon kirigami, while 

tures with different geometries are generated by using in-house co

and 108.6 Å, respectively. Initial cracks should be introduced at the

portantly, direction of the thickness should be designated as the p

can successfully simulate the plane strain model in this paper. Fig

line with the analytical solution based on LCCB theory, while we 

hope special care should be taken when nanoribbon kirigami plays
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