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A B S T R A C T

Kirigami, subjected to escalating strain, frequently exhibits pronounced instability, coupled with remarkable
flexibility and extraordinary extensibility. This behavior holds significant relevance for domains associated
with malleable and reconfigurable surfaces, including stretchable electronics and modifiable functional devices.
Nonetheless, conventional design methodologies, anchored in geometric symmetry and governed by minimum
energy principles, tend to manifest buckling instabilities restricted to symmetric and anti-symmetric modes. To
scrutinize the mechanisms of buckling behavior that disrupt geometric symmetry and comprehend the influence
of geometry on programmability during reconfiguration, we propose an innovative strategy for kirigami’s
design. This strategy capitalizes on advanced deep learning methodologies, employing convolutional neural
networks (CNNs) for categorizing buckling modes and recurrent neural networks (RNNs) for prognosticating
constitutive relationships. Our approach furnishes a programmable design solution adept at identifying optimal
kirigami patterns, characterized by their superior tensile strength and distinct buckling conformations, thereby
fulfilling a diverse array of functional necessities. Our results illustrate that the proposed method displays a high
level of precision in distinguishing between buckling modes of geometric symmetry and patterns that deviate
from such symmetry. The buckling mode space has been extended and rediscovered, allowing unique modes
to have the potential to be adopted into functional devices. Additionally, it demonstrates minimal losses in
predicting constitutive relationships. Intriguingly, we discovered that tensile responses are geometry-centric
and adjustable. Buckling modes showcase a dependency on geometry, with certain geometric parameters
either significantly augmenting the sensitivity of buckling modalities or causing the buckling instability modes
to become apathetic and unresponsive. Guided by the principle of target-led pattern parameter design, we
proffer prospective tactics for the design of kirigami capable of delivering the desired mechanical performance.
Moreover, we explore the feasibility of employing alternative biological materials in these designs.
1. Introduction

In recent years, the convergence of scientific and artistic disci-
plines, specifically kirigami and origami, has driven significant ad-
vancements in flexible and reconfigurable surface technologies. These
developments have been primarily fueled by the underlying topologi-
cal design principles of kirigami materials, which provide them with
unique metamaterial-like characteristics. The remarkable metamorphic
behavior exhibited by kirigami has resulted in its widespread appli-
cation across various scales, including large-scale deployable space
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satellite structures [1], programmable building skins [2], as well as
microscale stretchable electronics [3–5], and nanocomposites [6]. How-
ever, designing kirigami structures systematically remains a persistent
challenge, aiming to achieve diverse three-dimensional (3D) shapes
through subtle modifications of the underlying geometric patterns in
two-dimensional (2D) sheets. These methodologies enable the real-
ization of a wide range of functionalities and mechanical properties.
Such properties are often characterized by intricate transformations
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data mining, AI training, and similar technologies. 
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Fig. 1. Schematics of the initial and deformed configurations of kirigami structures. (a) The geometrically symmetric kirigami and its engineering elasticity. Its mechanical response
can be described as three stages. When the tensile strain exceeds the critical buckling strain, the kirigami structure undergoes buckling. (b) The geometrically symmetry-breaking
kirigami and its engineering elasticity. The geometric symmetry breaking can result in a variation of the mechanical response, which significantly extends design space and
dramatically enhances capability of the stress–strain curve. (c) Local deformation mechanisms of kirigami structures. A variety of applications rely on their integration of local
deformations. Two types of local deformation are identified by simulation and experimental observation. Kirigami with such the deformation mechanisms can be used as a potential
substrate material for sensors in flexible electronics.
of 2D sheets into complex 3D configurations, involving a combina-
tion of external morphological alterations and internal adjustments to
the constitutive relationships. Strategically cutting patterns into thin
sheets induces these variations, leading to multiple bifurcations and the
breaking of geometric symmetries throughout the nonlinear process.

The first bifurcation point in kirigami structures, designed based on
traditional symmetry principles, typically represents a critical thresh-
old for the transition from in-plane to out-of-plane behavior. It is
important to note that in ultra-thin two-dimensional materials, the pri-
mary physical mechanism often involves out-of-plane buckling, which
prevails over in-plane deformation and crack propagation. For moder-
ately thicker kirigami structures, the force–displacement curve displays
three distinguishable progressive phases, with the presence of pre-
buckling and predominantly in-plane rigid rotations, as illustrated in
Fig. 1(a) [7]. The critical buckling strain serves as the boundary be-
tween the first and second phases. By carefully selecting appropriate
geometric parameters and introducing a competition mechanism be-
tween symmetric and anti-symmetric modes, the occurrence of slightly
complex deformation patterns after kirigami buckling can be triggered.
The investigation of this buckling instability behavior in symmetric
kirigami has been previously conducted using the theory of sinusoidal
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beams [8]. An energy-based approach and principles from beam and
plate theory have been employed to establish a theoretical framework
for analyzing the tension-induced buckling of symmetric kirigami. This
framework enables the determination of the flexibility and critical
buckling strain of symmetric kirigami, thus validating its mechanical
programmability.

Geometric symmetry breaking can blur this first bifurcation point,
thus allowing the curve to be smooth [see Fig. 1(a-b) for details].
Geometric symmetry breaking, as an emerging design strategy, has
exhibited remarkable potential in the field of kirigami. In contrast to
traditional symmetric kirigami designs, the introduction of geometric
symmetry breaking opens up an expansive design space, offering nu-
merous novel possibilities [see Fig. 1(b) for details]. This exploration
can be classified into two categories. The first category involves the
introduction of additional boundary conditions by inserting small cuts
at the tips of the original cuts, effectively enhancing the ultimate
tensile strain [9]. The second category pertains to the utilization of
inhomogeneous cutting patterns, which significantly mitigate unde-
sired boundary effects [10]. It is noteworthy that both classes of
cutting patterns induce buckling during stretching, exhibiting a similar
nonlinear response observed in the aforementioned three progressive
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phases [11]. The design of parallel cuts is more widely investigated and
can be employed to alleviate stresses in elastic materials [12]. Subse-
quent improvements in its design can enhance buckling performance,
stretchability, and flexibility [8,13]. However, kirigami structures are
prone to plastic deformation and fracture damage at the cutting tips,
limiting their ability to achieve high stretchability [14,15]. To address
these undesired effects, finely-tuned cutting pattern designs have been
developed, such as cuts with widened and rounded corners [16], re-
duced cut spacing [17], or hierarchical cuts [18]. The out-of-plane
mechanism initially manifests as buckling, followed by instability in
the post-buckling stage, resulting in lateral deformation of the structure
at local weak points until a stable state is achieved. The emergence
of this unique phenomenon in kirigami stems from the underlying
kinematics of the cutting pattern, where externally applied tensile
deformation in the global plane is counteracted by local compressive
deformations in the planes adjacent to the cuts. Consequently, when
the global tensile strain in kirigami surpasses a critical threshold,
out-of-plane buckling occurs due to compression at the hinges near
the cuts. Due to such unique characteristics, kirigami can be utilized
as mechanically flexible and integrated devices for diagnostics and
therapeutics in personalized healthcare. Kirigami accommodates the
flexibility, comfort, adhesion, stretchability and shape programmability
required for functional devices through two types of local buckling at
the cutting position [see Fig. 1(c) for details] [19–23]. The elucidation
of the relationship between geometric symmetry breaking cutting pat-
terns and their corresponding mechanical responses remains unclear,
necessitating further investigation.

Despite the significant progress made in developing reduced-order
models [7,8,24,25] for symmetric and simple asymmetric kirigami
designs, the field still lacks a comprehensive theoretical framework that
accurately captures the explosive growth of buckling modes resulting
from geometric symmetry breaking and the corresponding design space
in kirigami. This raises a fundamental question: Can we establish
a unified framework capable of accurately describing the explosive
growth of buckling modes triggered by geometric symmetry breaking
in kirigami, while enabling prospective design approaches that depart
from the traditional ‘‘trial and error’’ paradigm [26]? We firmly be-
lieve that achieving this goal requires an active integration between
geometry design and quantitative mechanical properties [27].

Deep learning techniques have emerged as a cutting-edge approach
for analyzing and understanding complex relationships within vari-
ous fields, including materials science and design. In the context of
kirigami, these techniques hold great promise for advancing our un-
derstanding of the intricate connections between design patterns and
their corresponding mechanical responses. By harnessing the power
of large datasets, deep learning algorithms can effectively learn and
recognize intricate patterns and correlations, enabling the identification
of subtle associations between cutting patterns in kirigami and their
resulting mechanical behaviors. This data-driven approach provides
a unique opportunity to explore and unveil previously undiscovered
insights into the underlying mechanisms governing the behavior of
geometrically symmetry-breaking kirigami structures. The application
of deep learning techniques in the realm of kirigami has already
demonstrated its potential across different domains. For instance, in
additive manufacturing, deep learning has been utilized to optimize
processes and improve the quality and efficiency of fabrication [28–
32]. In the field of metamaterials and metasurfaces, deep learning has
played a crucial role in accelerating the design and discovery of novel
structures with desired properties [33–43]. Moreover, in microstructure
optimization, deep learning algorithms have been employed to enhance
the performance and functionality of materials by tailoring their inter-
nal structures [44–46]. Additionally, deep learning has shown potential
for more accurate predictions of material behavior under complex
loading conditions, such as, modeling symmetry breaking and path-
dependent plasticity [47,48]. Furthermore, in the realm of 2D kirigami

nanomaterials, deep learning has facilitated the autonomous design and
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discovery of new structures with tailored properties [49,50]. To the best
of our knowledge, although there have been studies applying machine
learning to kirigami, they only concentrate on fracture strain, yield
strength and deformation of the unique kirigami structure [49–51],
and do not involve the discussion of buckling modes and all-process
mechanical responses, and this is the novel attempt for the solution of
the target-led pattern parameter design problem of kirigami by utilizing
the combined deep learning methods. By incorporating deep learning
techniques into the study of kirigami, researchers can unlock a wealth
of knowledge and insights, paving the way for more efficient design
strategies, enhanced mechanical performance, and the exploration of
novel applications. The ability to leverage vast amounts of data and
extract valuable information from it empowers researchers to over-
come the limitations of traditional design approaches, opening up new
possibilities for the development of advanced kirigami structures with
tailored functionalities.

In this paper, a unique deep learning-based design approach for
kirigami is presented to acquire desirable cutting patterns and cor-
responding mechanical responses. Mechanical modeling of symmetric
kirigami is illustrated to verify finite element (FE) simulation results
with fabricated experimental samples. Then proposed deep learning ap-
proach is introduced to reach precise predictions for complex nonlinear
constitutive relationships and buckling modes. Furthermore, multiple
buckling modes including geometric symmetry patterns and geometric
symmetry breaking patterns are divided to depict buckling morpholo-
gies and the effects on mode-dependence of different parameters are
systematically examined. Moreover, the performance of our approach
for four buckling examples is validated by experiments and simula-
tions. Finally, alternative materials can be reverse designed to cover
most of the biological materials Ashby plot with synthetic polymers
in our approach. Through the target-led pattern parameter design,
superior symmetry-breaking pattern candidates with multimodality are
obtained to match various movement states and accommodate in-
dividual differences in health monitoring, which is not reached by
geometrically symmetric kirigami. This study contributes mechanistic
knowledge and predictive insights to address a symmetry-breaking
challenge into kirigami design and its applications.

2. Symmetric kirigami and experimental benchmark

It is well known that the pristine two-dimensional planar structure
is difficult to be stretched. When we conduct the cutting process on
this planar structure, a kirigami is produced. In this case, the structure
will be unstable in out-of-plane buckling when stretched, and thus has
high stretchability. Kirigami considering buckling plays an outstand-
ing role in applications such as flexible electronics, biodetection, and
electrothermal devices [52–55]. In particular, its tensile property is
a fundamental and essential mechanical property, which is directly
related to reliability. This section outlines the tensile property of the
symmetric kirigami and its experimental benchmark.

We start by performing mechanical tests to evaluate the tensile
modulus and tensile strength. In these tests, kirigami structures can
be fabricated from materials with low-elastic-modulus. Low-elastic-
modulus can lead to deformation and instability buckling of this struc-
ture. Thus, experimental specimens are manufactured, whose material
is made of high-density polyethylene (HDPE) with Young’s modulus
𝐸 = 950 MPa, Poisson’s ratio 𝑣 = 0.38, and thickness 𝑡 = 0.1 mm.
HDPE membranes with different geometrical parameters are tested
together considering the comparison. Tensile tests are conducted using
an electronic universal material testing machine (INSTRON-5965) and
following the ASTM D882-02. Note that the magnitude of stretch
(0.1 mm/s) is set, which ensures consistency of material deformation
from the in-plane deformation to the out-of-plane deformation when
the specimen is tested.

Next, the simulation results of the specimen have been verified by

tests in our previous work [8]. Fig. 2 show stress–strain curves of two
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Fig. 2. Comparisons between experimental and simulation results of stress–strain curves for symmetric kirigami structures with different geometric patterns. Results indicate that
various geometric patterns can contribute to distinct maximum tensile strains and overall buckling modes integrated by two local buckling, i.e., (a) local symmetric buckling and
(b) local anti-symmetric buckling.
different specimens and prove that symmetric kirigami structures with
different geometric parameters can produce various buckling deforma-
tions in uniaxial tension. The tensile performances of the kirigami struc-
tures are characterized by geometry-dependent effects. Then, buckling
deformation results from the insets of Fig. 2 are given to reveal the
morphological evolution of symmetric kirigami structures. The curves
and the scatter points indicate the nonlinear stress–strain relationships
as observed from simulations and experiments, respectively. The insets
represent the postbuckling conditions of symmetric kirigami specimens
in experiments and simulations at a late stage of tension. As the
tensile displacement increases, the in-plane deformation gradually is
converted to out-of-plane deformation, which subsequently stretches
until complete fracture. The FE simulation results agree well with the
experimental results. It should be noted that plastic deformation and
fracture of symmetric kirigami are not involved here. This is because
out-of-plane buckling is induced earlier than the appearance of cracks.
The in-plane deformation of symmetric kirigami during the initial phase
of stretching leads to the stress concentration and local tearing that
should have occurred at the tip of the cut. But then that part of the
energy is repaid by the out-of-plane deformation of symmetric kirigami.
For the kirigami structure in Fig. 2(a), two neighboring slits are farther
apart in the longitudinal direction, resulting in weaker interactions
between the slits. In this case, a single slit generates a geometric
incompatibility. The long distance between the slits allows only a small
structural deformation of the kirigami structure, which is then load-
bearing by the material, and there is a stress distribution on the whole
surface of the kirigami structure after stretching, resulting in a low
tensile strain and a high strength. For the kirigami structure in Fig. 2(b),
the interaction between the slits increases as the spacing between
the slits becomes smaller. Such a kirigami structure accomplishes the
overall configuration change mainly through structural deformation.
Under the tensile loading of the kirigami structure, the local defor-
mation at the crack tip is repaid by the out-of-plane deformation
of the kirigami structure, and the out-of-plane buckling is triggered
much earlier than the stretching of the material. Therefore, only the
tip of the slit has stress concentration phenomenon on the surface
of this kirigami structure, while the sheet around the slit is basically
stress-free. The stretching of the structure is completely borne by the
structural deformation without stretching the material, so the tensile
strain is high while the strength is low.

The undeformed geometry of the planar structure is defined by
length 𝐿, width 𝑊 and thickness 𝑡, completely. The undeformed ge-
ometry of kirigami is determined in the inset of Fig. 3. Besides the
geometry, the mechanical response of kirigami is decided by its Young’s
modulus 𝐸, Poisson’s ratio 𝑣 and uniaxial tensile displacement 𝑢. Ge-
ometric symmetry kirigami exhibits lateral buckling under uniaxial
4 
tension, characterized by local symmetric and local anti-symmetric
buckling. To understand the buckling behavior, a theoretical frame-
work is proposed in Supplementary material. In general, kirigami struc-
tures undergo three stages in the stretching process as shown by the
curve in Fig. 1(a): elastic stage, extension stage, and hardening stage.
The geometrically symmetric kirigami structure in Fig. 2(b) shows
mainly only the first two stages. The third hardening stage is very short.
This is due to the small spacing of the slits, which makes the third stage
not obvious according to the low threshold of material fracture. When
symmetry breaking is introduced, as shown in Fig. 1(b), the geomet-
rically asymmetric kirigami structure has its curved transition points
blurred. Comparing with geometrically symmetric kirigami structures,
the introduction of geometric symmetry breaking opens up a wide
design space and provides many novel possibilities. This will be further
discussed in the subsequent section.

3. Symmetry-breaking kirigami using deep learning

Taking advantage of the distinct characteristics of kirigami slits,
we tap into their high designability. Through a combined approach
of experiments and simulations, we can architect various symmetry-
breaking kirigami patterns that control and foresee the mechanical
performance and buckling behavior. The crux now lies in deploying
kirigami to predict these properties reliably. This section outlines our
deep learning (DL)-based methodology to build models and identify
ideal kirigami structures for geometric patterns, as illustrated in Fig. 4.

3.1. Data generation for buckling kirigami

Building on our earlier experiments, it is highlighted that kirigami
is fashioned from a membrane material as depicted in Fig. 1. In order to
accurately represent the geometry-dependent traits, we have opted for
kirigami with judiciously chosen dimensions; specifically, 𝑊 = 100 mm
and 𝐿 = 2(𝓁sp + 𝓁slit).

Through our experimental investigations, we have observed that
different geometric patterns of kirigami structures exhibit varying me-
chanical properties and buckling modes. To validate these findings,
we conducted finite element (FE) simulations on four representative
kirigami choices and analyzed their stress–strain curves under uniaxial
tensile loading, as depicted in Fig. 3. The stretchability of kirigami
refers to the maximum strain that kirigami can achieve when the ma-
terial is in its elastic stage. As shown in Fig. 3(c), the maximum strain
point and deformation behavior of kirigami change with increasing
strain, indicating the high sensitivity of stretchability and buckling
modes to the topological configuration of the geometric pattern. It is

evident that the relationship between the geometry and mechanical
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Fig. 3. Schematic diagram of the symmetry-breaking kirigami design. (a) The concept definition of kirigami showing details of the geometric parameters. (b) The design space and
(c) representative kirigami structures of the precomputed pattern database. It provides the vast design space to kirigami optimization and candidate structures to achieve optimized
tensile performances in flexible and functional applications.
properties of kirigami is complex and nonlinear. To describe the differ-
ent geometric configurations, we introduce five geometric parameters
in Fig. 3(a): 𝓁slit represents the slit length, 𝓁sp represents the spacing
between two slits, 𝓁w represents the width between two slits, and 𝓁sll
and 𝓁spl represent the distance of the slit and spacing from the left
boundary in the unit cell, respectively.

By varying these geometric parameters, arbitrary kirigami patterns
can be tuned and generated. However, the parameter design space for
kirigami patterns is infinitely vast, making it impractical to explore
through exhaustive experiments or simulations. Instead of traditional
enumeration search methods, we propose employing deep learning
(DL) models to search for desired symmetry-breaking kirigami patterns
after training. For simplicity and representativeness, we impose con-
straints on these parameters during the training process. Considering
manufacturing feasibility, we exclude parameter selections below a
predefined minimum length scale of 1 mm. In this study, we set 𝓁slit
as a constant value of 15 mm, and the remaining geometry constraints
are presented as follows

𝓁w ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15},𝓁sll ∈ {1, 2,… ,𝓁slit},

𝓁sp ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15},𝓁spl ∈ {1, 2,… ,𝓁sp}.
(1)

To facilitate the selection process, we have constructed a substantial
database comprising 14,850 unique kirigami samples, utilizing the
aforementioned geometric parameters within the design space depicted
in Fig. 3(b). This approach ensures the diversity of symmetry-breaking
kirigami patterns while avoiding design duplications. While a larger
parameter interval would result in a smaller database, which may
suffice for specific kirigami designs, our objective is to provide a
comprehensive range of properties and distinctive candidates that can
be applied to various design scenarios. By employing this approach,
the generation of the database is a one-time implementation, while
the resulting database can be conveniently adapted to different de-
sign cases. As illustrated in Fig. 3(c), the constitutive relationships
of kirigami structures within this precalculated database are solely
5 
influenced by changes in geometric patterns, without any modifications
to the constitutive materials.

In the DL model, the relationship between geometric patterns and
displacement fields is established through data. Therefore, the prepara-
tion of representative data plays a crucial role in this design strategy. To
accurately characterize and predict kirigami deformation, each unique
kirigami configuration after stretching is paired with its corresponding
stress–strain curve and buckling mode, as depicted in Fig. 4(a). The
generated database encompasses two types of data: input data and
output data. The input data primarily consists of geometric patterns
and buckling modes, with geometric patterns described in detail by
their geometric parameters, and buckling modes utilized for prediction
and classification. The output data includes strain-stress curves and
the classifications of buckling modes obtained from finite element (FE)
simulations. The critical buckling strain, which determines the onset of
buckling in symmetry-breaking kirigami, has been derived from ana-
lytical solutions in our previous work [8]. While the critical buckling
mode governs the subsequent deformation path in the postbuckling
regime, the entire postbuckling deformation process can only be char-
acterized through numerical simulations. We have demonstrated that
the critical buckling mode of kirigami, which minimizes strain energy,
is highly sensitive to its geometric pattern [8]. Therefore, due to the
geometric nonlinearity, numerical simulations using the commercial
software ABAQUS are conducted in this study. The kirigami structure
is an elastic material with a modulus of elasticity of 1000 MPa and
a Poisson’s ratio of 0.3. A static general step is used for the analysis.
Vertical tensile displacements are applied to the upper and lower
boundaries of the kirigami structure with a mesh size of 1 mm, using
S4R cells and quad-dominated cell shapes. In addition, quasi-static
conditions are ensured by monitoring the kinetic energy. To trigger
instabilities, geometrical imperfections associated with modal superpo-
sition are introduced by calculating a linear perturbation analysis of the
kirigami structure with the same geometry. To streamline the process, a
Python code is developed to create a script that interacts with ABAQUS.
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Fig. 4. Deep learning based framework for kirigami. (a) Dataset construction and data preprocessing which include the generation of kirigami structures, and their mechanical
performances to establish the database. Forward learning based on the deep neural networks, which is employed to explore buckling modes and relation between stress and strain
of kirigami structures. The insets show the architectures of defined deep neural networks. (b) Schematic descriptions of forward and target-led pattern parameter designs of kirigami
in the framework of the kirigami design strategy. (c) Target-led pattern parameter design, which consists of a series of evolutionary steps to search for the ideal kirigami with the
desired target functionality.
This script automates a series of operations including pre-processing,
computation, and post-processing of kirigami numerical simulations
using a general static solver. The script generates a geometric model
by parsing the geometric descriptors of the varying kirigami structures.
A reasonable mesh size is predefined and applied for meshing, fol-
lowed by material assignment. Subsequently, boundary conditions and
interactions are calculated, and a simulation file is created to perform
the calculations. The final step of the script involves extracting and
storing the numerical simulation output. Notably, this entire process
is completely driven by the program without any human intervention.

3.2. Deep learning models for kirigami buckling prediction

This paper introduces two distinct types of deep learning mod-
els, as illustrated in Fig. 4(a). Kirigami structures undergo various
buckling modes and exhibit complex post-buckling deformation re-
lationships when subjected to stretching. The Convolutional Neural
Network (CNN) is employed to predict and classify buckling mode im-
ages, while the Recurrent Neural Network (RNN) is utilized to forecast
the intricate constitutive relations of kirigami structures. These mod-
els have demonstrated their efficacy in accurately predicting intricate
mechanical material properties and deformation behaviors [48,56].

3.2.1. Convolution neural network
The Convolutional Neural Network (CNN) is an extension of multi-

layer perceptron neural networks, specifically designed for processing
image data represented as two-dimensional grids of pixels. This unique
characteristic of CNNs has led to significant advancements in tasks
such as self-driving cars [57] and face recognition [58]. CNNs excel
at predicting and classifying image data due to their ability to capture
spatial relationships effectively. Furthermore, the parallelizability of
6 
convolution operations across GPU cores enables CNNs to be compu-
tationally efficient and capable of generating accurate models with
minimal data samples. In this study, we leverage a CNN-based neural
network to train our computational buckling images using labeled
buckling modes, as shown in Fig. 5. The database generated from
mechanical simulations is divided into input vectors, denoted as 𝐗,
and output vectors, denoted as 𝐘. In the neural network framework,
the inherent structural information present in the images is abstracted
and represented as numerical vectors in the input vector 𝐗. The output
vector 𝐘 encompasses the various buckling modes observed in kirigami
structures. Then the input and output vectors are expressed in the
functional form

𝐗𝑖,𝑗 = �̂�
[

𝑋11, 𝑋12,… , 𝑋1𝑗 ;𝑋21, 𝑋22,… , 𝑋2𝑗 ;… ;𝑋𝑖1, 𝑋𝑖2,… , 𝑋𝑖𝑗
]

, and
𝐘 = �̂�

(

𝑌1, 𝑌2,… , 𝑌𝑛
)

,

(2)

where 𝐗𝑖,𝑗 denotes numerical values corresponding to the pixels of the
image data, i.e., the pixel at location (𝑖, 𝑗) in the input image. 𝐘 is the
classifications of the image data. As discussed above, an CNN can be
defined as a mapping form

𝐘 = 𝑓CNN(𝐗𝑖,𝑗 ). (3)

Similar to the general neural network, the CNN is divided into an
input layer, the hidden layers and an output layer. The hidden state
vector 𝐇𝑖,𝑗 can be calculated to indicate the pixel at location (𝑖, 𝑗) in
the immediate hidden representation. Thus the hidden matrix 𝐇𝑖,𝑗 can
be given by the fully connected layer as a functional form [59]

𝐇𝑖,𝑗 =
∑

𝑘

∑

𝑙
W𝑖,𝑗,𝑘,𝑙𝐗𝑘,𝑙 + 𝐁𝑖,𝑗 =

∑

𝑎

∑

𝑏
V𝑖,𝑗,𝑎,𝑏𝐗𝑖+𝑎,𝑗+𝑏 + 𝐁𝑖,𝑗 , (4)

where W and 𝐁 represent the weight matrices as fourth-order tensors
and the biases, respectively. Then V = W is set. The indices
𝑖,𝑗,𝑎,𝑏 𝑖,𝑗,𝑖+𝑎,𝑗+𝑏
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Fig. 5. Workflow of deep learning in displacement fields for the inverse identification of kirigami buckling modes. (a) Data preprocessing. The displacement fields are transformed
for better identification and the key features are conserved in the next CNN model. (b) CNN model in the displacement field as the input layer and its extracted key features
as feature maps, respectively. (c) Mode classification. The predicted key features in displacement fields of kirigami structures by CNN model are classified to obtain the different
buckling modes.
𝑎 and 𝑏 cover the entire image, running across both positive and nega-
tive offsets. However, this requires the large number of parameters, be-
yond what computers can address. Next, two operations, translation in-
variance and locality, are performed to obtain the convolutional layer

𝐇𝑖,𝑗 =
∑

𝑎

∑

𝑏
𝐕𝑎,𝑏𝐗𝑖+𝑎,𝑗+𝑏 + 𝑏0, and 𝐇𝑖,𝑗 =

𝛥
∑

𝑎=−𝛥

𝛥
∑

𝑏=−𝛥
𝐕𝑎,𝑏𝐗𝑖+𝑎,𝑗+𝑏 + 𝑏0, (5)

where 𝐕𝑎,𝑏 = V𝑖,𝑗,𝑎,𝑏 is a convolutional kernel and 𝐁𝑖,𝑗 is a constant, de-
scribed 𝑏0. To extend this, different features embedded in the image are
extracted using multiple kernels of the same dimensionality. Therefore,
the output of the convolution layer will be a feature mapping of the
results of multiplying different kernels with the input image as shown
in Fig. 5(b).

3.2.2. Recurrent neural network and gated recurrent unit
The Recurrent Neural Network (RNN) extends the capabilities of

feed-forward neural networks and is particularly well-suited for han-
dling input vectors of varying lengths. RNNs excel in tasks involving
sequential data, such as natural language processing and speech recog-
nition [60]. By utilizing hidden states that retain information from
previous inputs, RNNs can effectively incorporate historical data to
make predictions for future outputs. In the context of this study, stress–
strain curves are employed as both the training input and output data
in the deep learning approach. This choice enables the integration
of prior knowledge regarding the mechanical response of kirigami
structures from experimental observations and simulations, facilitating
a more accurate characterization of the deformation behavior. The
stress response of kirigami can be defined by

 = ∕, (6)
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where  represents the vertical tensile force of kirigami and  is the
cross-sectional area of kirigami. The integration of the prior knowl-
edge obtained from experiments and simulations into the neural net-
work via the stress–strain curves will effectively increase the learning
concentration and improve its accuracy.

The generated database acquired from the mechanical simulations
is split into input vectors and output vectors, indicated as 𝑿 and 𝒀 ,
respectively. In the neural networks, the input vector 𝑿 is assumed
to rely on the geometric patterns and the strain array, 𝜀1, 𝜀2,… , 𝜀𝑛.
The output vector 𝒀 is only considered to include the global stress of
kirigami, , as shown in Fig. 6(a). This functional form can be described
as

𝑿 = �̂�
(

𝓁𝑤,𝓁𝑠𝑝,𝓁𝑠𝑙𝑙 ,𝓁𝑠𝑝𝑙 , 𝜀1, 𝜀2,… , 𝜀𝑛
)

, and 𝒀 = �̂�
(

1,2,… ,𝑛
)

, (7)

where 𝜀𝑛 and 𝑛 denote values of strain and stress at the current
time 𝑡𝑛. Considering the history-dependent behavior of constitutive
relationships, information on the history of 𝜀 and  is prescribed. As
discussed above, an RNN can be defined as a mapping form

𝒀 𝑁 = 𝑓RNN(𝑿1,𝑿2,… ,𝑿𝑁 ), (8)

where 𝑿𝑛 = 𝑿
(

𝑡 = 𝑡𝑛
)

∈ R𝑛×𝑑 (number of examples: 𝑛, number of
inputs: 𝑑), for 1, 2,… , 𝑁 , represent 𝑁 time-dependent input vectors and
𝒀 𝑛 = 𝒀

(

𝑡 = 𝑡𝑛
)

∈ R𝑙 (number of examples: 𝑙) represents the mapped
output vector at time step 𝑡 = 𝑡𝑁 .

Due to the issue of vanishing or exploding gradients, capturing
long-term dependencies in Recurrent Neural Networks (RNNs) has been
challenging [61]. However, this problem has been addressed with the
introduction of Long Short-Term Memory (LSTM) networks [62]. In a
similar vein, the Gated Recurrent Unit (GRU) has emerged as another
solution to tackle this challenge. GRU incorporates adaptive ‘‘reset’’
and ‘‘update’’ memory units, replacing the input gate and forget gate
of LSTM with the update gate and reset gate, respectively, which are
calculated at the current time step. While LSTM and GRU demonstrate
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Fig. 6. (a) The main building blocks of recurrent neural network (RNN). (b) Operations of the GRU unit to update the hidden layer at time 𝑡 according to the input at time 𝑡 and
the hidden state at time 𝑡 − 1. RNNs can be defined as a mapping form through main building blocks and GRU units.
comparable computational abilities in various tasks [63], GRU exhibits
the ability to balance the previous and current hidden states and reveal
the memory content, as illustrated in Fig. 6(b). Additionally, GRU
has a smaller number of variables compared to LSTM, which aids in
convergence. In the GRU model, the reset gate and update gate are first
computed.

The specific equations correspond to the first hidden layer can be
provided in Supplementary material. Subsequent hidden layers can be
expressed as

𝑹𝑖
𝑛 = 𝜙

(

𝑾 𝑖
𝑋𝑅𝑿𝑛 +𝑾

𝑖
𝐻𝑅𝑯

𝑖
𝑛−1 + 𝒃𝑖𝑅

)

,

𝑼 𝑖
𝑛 = 𝜙

(

𝑾 𝑖
𝑋𝑈𝑿𝑛 +𝑾

𝑖
𝐻𝑈𝑯

𝑖
𝑛−1 + 𝒃𝑖𝑈

)

,

�̃� 𝑖
𝑛 = tanh

(

𝑾 𝑖
𝑋𝐻𝑿𝑛 +𝑾

𝑖
𝐻
(

𝑹𝑖
𝑛 ⊙𝑯 𝑖

𝑛−1
)

+ 𝒃𝑖𝐻
)

,

𝑯 𝑖
𝑛 = 𝑼 𝑖

𝑛 ⊙𝑯 𝑖
𝑛−1 + (1 − 𝑼 𝑖

𝑛)⊙ �̃� 𝑖
𝑛, with 𝑖 = 2, 3,… ,𝑀.

(9)

The above equations are performed iteratively until the state of the last
hidden layer state vector 𝑯𝑀

𝑁 at time 𝑡 = 𝑡𝑁 is achieved. In this manner,
the final output vector

𝒀 𝑁 = 𝑾 𝑂𝑯𝑀
𝑁 + 𝒃𝑂 , (10)

where 𝑾 𝑂 ∈ R𝑙×ℎ𝑀 and 𝒃𝑂 ∈ R𝑙 represent the weight matrix and the
bias of the output layer, respectively.

3.3. Refinement of hyperparameters and architecture optimization

In this study, the Keras library [64] is employed to construct the
CNN and RNN models. For the CNN model, convolutional feature maps
are combined with hidden layers, followed by a dense layer to classify
post-buckling kirigami images into 8 categories. In the RNN model,
RNN cells are used in conjunction with multiple hidden layers and
a time-distributed dense layer [64] to transform the two-dimensional
outputs of the RNN cells into the desired output, which corresponds
to the stress–strain curves of kirigami during deformation increments.
The GRU architecture is selected due to its superior accuracy com-
pared to other RNN architectures [48]. To optimize the performance
of the models, hyperparameter analysis is conducted to determine the
appropriate number and size of hidden layers. Further details regarding
this analysis are provided in the subsequent discussion. To evaluate the

accuracy of predictions, the mean squared error (MSE) is utilized as the
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error metric. The mean absolute error (MAE) is employed as the loss
function, which quantifies the disparity between predicted values and
actual values MSE can be obtained as

MSE = 1
𝑛𝑠

𝑛𝑠
∑

𝑖=1

(

𝑌𝑖 − 𝑓
(

�̄�𝑖
))2 , (11)

where 𝑛𝑠 is the number of samples and 𝑌𝑖 and 𝑓 (�̄�𝑖) represent the 𝑖th
target value and the prediction of a neural network, respectively.

Meanwhile, by reasonably computing the gradient of the loss func-
tion for each epoch and then iterating over the parameters, the Adam
optimizer [64] is employed in this work. For hidden layers, two acti-
vation functions including sigmoid 𝑆(𝑥) [65] and Rectified Linear Unit
(ReLU) 𝑅(𝑥) [66] are selected with the expression as

𝑆(𝑥) = 1
1 + 𝑒−𝑥

, and 𝑅(𝑥) = max(0, 𝑥). (12)

During the data preprocessing stage, it is essential to normalize the
input data (i.e., kirigami descriptors and deformation paths) as well as
the output data (i.e., stress and buckling modes) from the database to
the range [0, 1]. This normalization process promotes model training
and enhances accuracy. Based on the aforementioned processes, we
construct and train the deep learning (DL) models, as depicted in
Fig. 4(a), to establish a clear correlation between geometric parameters
and mechanical performance in the database.

The datasets used for training and validation in the DL models,
namely the training set and validation set, account for 80% and 10% of
the database, respectively, while the remaining portion is allocated for
the test set. As illustrated in Fig. 4(a), finite element (FE) simulations
of kirigami structures are conducted, followed by the implementation
of DL models to predict their stretching performance. The loss function
employed in the training process aims to quantify the discrepancy be-
tween the DL model predictions and the FE simulation results. Through
iterations, the loss function is computed and gradually reduced, in-
dicating the convergence and consistency between the two methods,
thereby validating the trained model. As the iterations progress, the
predicted stress–strain curve will closely match the data from the test
set. The complexity of DL models can lead to a decrease in the com-
putational loss value within the training set as the number of units or
layers in the model reasonably increases. This appropriate complexity
ensures accuracy in the model without encountering issues such as
overfitting or underfitting. To illustrate the workflow of forward and
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Fig. 7. The hyperparameter analysis results and the predictive performance of the selected RNN model. (a) Hyperparameter analysis of the RNN model for the number of stacked
GRU layers and (b) the number of neurons in GRU cells. (c) The loss and (d) the metrics for the training set and the test set. Based on the analysis of hyperparameters and
configurations, the optimal setup for the RNN model involves 3 GRU layers and 500 neurons to achieve the best results. After 200 epochs of iteration, the prediction losses and
metrics values for the training and test sets are sufficiently low.
target-led pattern parameter designs, a specific geometric pattern of
kirigami is presented in Fig. 4(b). Additionally, Fig. 4(c) showcases the
evolutionary steps involved in designing and selecting an ideal kirigami
pattern, which will be further discussed in subsequent sections with
more details.

4. Buckling instability results in symmetry-breaking kirigami

As described earlier, a total of 14,850 geometric patterns for
kirigami structures were generated and subjected to finite element (FE)
simulations to characterize their tensile performance. This section out-
lines the performance of DL models based on simulations and buckling
instability and nonlinear results in symmetry-breaking kirigami.

4.1. Performance of DL models

In the simulations, the kirigami models were incrementally stretc-
hed, starting with a pre-buckling stage exhibiting in-plane deformation,
followed by a post-buckling stage with out-of-plane deformation until
the displacement exceeded the critical buckling threshold. Finally, the
structures were stretched until fracture. The computational complexity
of the tensile process resulted in an average wall time of 4 min per
simulation on a Ryzen 9 12-core processor. Mathematically, the geo-
metric designs of symmetry-breaking kirigami can be infinitely varied
by controlling the four geometric parameters. To strike a balance be-
tween including representative models and reducing the workload of FE
simulations, geometric constraints were introduced. From Fig. 3(a), it
can be observed that 𝓁slit∕𝓁w,𝓁slit∕𝓁sp ∈ [1, 5] and 𝓁slit∕𝓁sll,𝓁slit∕𝓁spl ∈
[1, 15] were specified as the geometric constraints, forming a vast design
space as shown in Fig. 3(b).

In this study, the architecture selected for the GRU formulation
involves a second-level hidden state. This choice allows the GRU units
to directly access the hidden state of history-dependent, temporal in-
puts, and non-temporal inputs, thereby improving accuracy compared
to other RNN architectures [48]. Two activation functions, sigmoid
and ReLU, are utilized, and the mean absolute error is employed as
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the loss function. The Adam optimizer with a tuned learning rate is
used, and the model is trained for 200 epochs. It is worth noting
that the DL model can provide much faster predictions compared to
FE simulations. For instance, the generated DL model predicts the
mechanical performance of kirigami in 41 ms on a NVIDIA GeForce
RTX 2070, while it takes nearly 4 min to perform an FE simulation
on a Ryzen 9 12-core processor. Although the actual computing time
may vary depending on the hardware, it is evident that this data-driven
approach enables faster prediction and evaluation. The use of RNN
models to generate tensile performance for kirigami structures with
diverse geometric patterns, rather than relying solely on intricate FE
simulations, is significant for geometric optimization.

The hyperparameters and configurations of the developed DL mod-
els are optimized, considering aspects such as dropout layers, normal-
ization processes, and optimization algorithms. Fig. 7(a) presents the
results obtained from different stacked GRU layers, evaluated using
the scaled mean absolute error (SMAE). The findings indicate that a
single GRU layer is insufficient to support the necessary computational
complexity of the model. Furthermore, the predictive capability of the
model with 5 GRU layers is similar to that of the model with 3 GRU
layers, but the former requires more training time and computational
resources. Therefore, RNN models with 3 GRU layers are employed
in this work. Similarly, Fig. 7(b) shows that the model with 500
neurons performs relatively optimally compared to models with 100
and 1000 neurons. Therefore, based on the analysis of hyperparameters
and configurations, the optimal setup for the RNN model involves 3
GRU layers and 500 neurons to achieve the best results. Fig. 7(c-d)
demonstrate the predictive evaluations of the training and test sets,
focusing on the loss and metrics of the RNN model. After 200 epochs
of iteration, the prediction losses for the training and test sets are
sufficiently low at 0.00048503 and 0.00051059, respectively, with low
metrics values of 0.000014289 and 0.000014586 for both sets. The
configuration and evaluation of the CNN model will be discussed in
Section 4.2.
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Fig. 8. The symmetric kirigami images and results. Buckling images of four typical configurations using FE simulations showing the out-of-plane deformation. Unit of the color
bar is in mm. Phase diagram demonstrating the variations in buckling configurations of kirigami structures, as the values of 𝓁𝑤 and 𝓁𝑠𝑝 are varied and four typical modes showing
different buckling configurations.

Fig. 9. Kirigami images and results in the CNN model. Confusion matrix of eight typical modes with buckling images of typical configurations using FE simulations showing the
out-of-plane deformations. Unit of the color bar is in mm. The CNN model identifies and classifies the different buckling modes with a good classification accuracy.
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Fig. 10. The performance of our method on four buckling modes with numerical and experimental validations. (a) Cuts. (b) Sym. (c) Anti-sym. (d) Co-occurrence. The results
from simulations and experiments show that the method in this study can predict the buckling modes of kirigami structures well in terms of geometric patterns and displacement
fields. The displacement field experiments are tested by a T-Cam MR digital camera system.
4.2. Explosive multistable buckling mode space and verifying nonlinear
behavior

For kirigami with geometrically symmetric patterns, a series of
systematic studies have been conducted to investigate their mechanical
behavior under uniaxial tension by varying 𝓁sp and 𝓁w within reason-
able ranges, as discussed in our previous work [8]. Fig. 8 presents four
buckling modes that illustrate the post-buckling state of kirigami during
the later stages of stretching, along with a phase diagram depicting
these modes. The ‘Cuts’ mode is observed when 𝓁sp = 𝓁slit. In this
case, the spacing between adjacent slits in the vertical direction is
large, leading to minimal interaction between the slits in accordance
with St. Venant’s principle. Consequently, due to the geometrical in-
compatibility of individual slits, only a slight degree of out-of-plane
11 
buckling occurs around the slits. Thus, this buckling mode is primarily
influenced by in-plane stretching.

With a decrease in 𝓁sp, thin kirigami structures undergo lateral
buckling, leading to the development of three additional buckling
modes. As the interaction between the slits intensifies, the buckling
configuration of kirigami gradually transitions into a system dominated
by out-of-plane bending. Changes in other geometric parameters result
in different types of local buckling, namely local symmetric buckling
and local anti-symmetric buckling. Local symmetric buckling is char-
acterized by out-of-plane displacement symmetric about the transverse
axis of symmetry, while local anti-symmetric buckling is the opposite.
These two types of local buckling represent local energy minimum
points in kirigami buckling. Integrating these local buckling results in
three other buckling modes: mode Sym, mode Anti-sym, and mode Co-
occurrence. Mode Sym and mode Anti-sym indicate the prevalence of
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Fig. 11. Bio-mimetic applications for stress–strain responses in the human back
skin [67] and the articular cartilage [68], along with the results of typical kirigami
designs. Here, the green region indicates the capacity of the stress–strain curve that
kirigami can achieve. Any required stress–strain curve in this region can be reverse
designed by our method to search for a corresponding well-matched kirigami candidate.

Fig. 12. A broad range of Young’s moduli for most materials at a wide range of
elongation-at-break plotted on an Ashby diagram [69]. Most biological materials can fit
the biological triangle rule, demonstrating a reasonably low Young’s moduli at moderate
stretchability. By the manner of kirigami, the range of synthetic polymer, polyethylene
(dark purple region), can be extended to a larger range (mauve region) and thus contain
a wide range of biological materials. This makes it mechanically possible to adopt
polyethylene as a substitute for biological materials.

local symmetric and anti-symmetric buckling, respectively, while mode
Co-occurrence signifies the coexistence of both types of local buckling
in different areas of kirigami. These buckling modes persist through-
out the post-buckling stage of kirigami and undergo transformations
as the geometric parameters vary, highlighting their dependence on
geometry. Notably, the buckling modes exhibit a strong correlation
with the geometric parameter 𝓁w but are less sensitive to 𝓁sp. The
stress distribution in finite element simulations for the four typical
deformation configurations is depicted in the inset of Fig. 8. It is evident
that stress concentrates at the slit tip, while the stress levels elsewhere
are relatively low. The overall post-stretching process demonstrates
remarkable hardening, representing a significant deformation transfor-
mation mechanism from bending and twisting deformation at the slit to
stretching deformation. Eventually, as the strain continues to increase,
kirigami fails and the material fractures.
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Considering the geometric asymmetry, the extended representation
of buckling modes in the mechanical response (see Fig. 9) offers valu-
able insights into the underlying buckling modes during the stretching
of kirigami. Based on the four buckling modes observed in geometri-
cally symmetric kirigami, it is evident that local, global, and bilateral
modes can be distinguished based on the spatial distribution of local
buckling types around the slits. The insets in Fig. 9 illustrate typical
deformation configurations associated with different extended buckling
modes. This figure enables the prediction of buckling and deformation
patterns in different regions of kirigami under the stretching load,
providing a solid foundation for target-led pattern parameter design
in potential functional applications. These results demonstrate the po-
tential of employing deep learning techniques, rather than complex
and time-consuming finite element simulations, to predict buckling and
deformation behaviors of kirigami structures during stretching.

To verify the reliability of DL models, experimental examples of
kirigami structures are presented in Fig. 10. Four samples were fab-
ricated using a similar experimental approach as described earlier, and
displacement field measurements were performed using a T-Cam MR
digital camera system. These samples exhibit different buckling modes
when subjected to stretching. A comparison of the overall structure’s
geometric patterns and local details demonstrates the high accuracy of
the CNN model classification, as indicated by the classification predic-
tions. Additionally, comparisons between experimental and simulated
displacement fields are presented to further support the accuracy of the
predictions.

The rational kirigami design described above allows the develop-
ment of artificial materials with a nonlinear stress–strain response that
reproduce a flexible substrate adhered to the surface of biological
tissue. For example, Fig. 11 shows two typical kirigami materials
whose nonlinear stress–strain curves are very close to those of the
human back skin and the articular cartilage. The stress–strain curves
rapidly predicted and selected by the RNN model based on the artificial
kirigami material match well with the target curves for human back
skin and articular cartilage. It showcases the potential application of
stress–strain curves predicted by the RNN model in flexible electronics.
Two examples of typical kirigami structures are shown, highlighting
their suitability and conformability to the human back skin [67] and
articular cartilage [68]. Applying such kirigami structures to the surface
of the human back enables the detection of body sensors and other
specific functions during daily activities without causing any physi-
cal discomfort. Furthermore, it is possible to quantitatively tailor the
design of kirigami to adapt to different parts of the human body, con-
sidering individual variations, thereby satisfying both functionality and
comfort requirements. Many biological tissues exhibit anisotropic me-
chanical properties, which poses a great challenge for the development
of artificial kirigami materials with mimetic stress–strain responses.
With the proposed RNN model, the response space can be effectively
enlarged and compatible with various stress–strain curves, and the
ideal stress–strain curves are inversely screened by matching the target
biological tissues, thereby identifying the desirable artificial kirigami
materials. The green region in Fig. 11 illustrates the capability of
kirigami structures to match stress–strain curves, indicating that the de-
veloped RNN model can be used to perform kirigami target-led pattern
parameter design that accommodates stress–strain curves within this
range. Finally, the Ashby plot in Fig. 12 presents Young’s modulus and
elongation-at-break under stretching. The kirigami operation plays an
extraordinary role in the expansion of the Ashby plot. By conducting
the kirigami operation on a material, a larger range of regions in the
Ashby diagram can be designed and explored with elastic modulus
and elongation not greater than that of the material. For instance, the
dark purple range representing the PE material can be extended to the
light purple range. Noted that this extension is only brought about by
the kirigami operation itself, while the deep learning model is built
to facilitate fast enumerative prediction and selection in the shallow
purple range. This enables the full potential of kirigami to be exploited
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and further arbitrary designs of kirigami patterns to be made. The range
of performance achievable with kirigami extends beyond that of typical
synthetic polymers, encompassing most biological materials. This offers
new perspectives for exploring alternative biological materials.

5. Discussion and conclusions

Symmetry, ubiquitously encountered in nature, is a fundamental
characteristic of many biological systems, including molecules vital to
life, such as amino acids and the saccharide units in starch. Alongside
this, nature also demonstrates a predilection for symmetry breaking,
manifest as chirality or other forms of discrete structural alterations,
which can profoundly influence both structure and functionality. A
perfect instance of this is observed in the art of kirigami, where
symmetry-breaking designs induce dramatic changes in mechanical
responses, making it a promising technique for applications in func-
tional devices, flexible electronics, and biomedical engineering. The
mechanics of kirigami, fundamentally, is an intricate interplay between
tensile, bending, and torsion energies. However, the science lacks pre-
cision tools to harness symmetry breaking in kirigami for enhancing
mechanical responses and enabling reverse design.

In this study, we propose a pattern design approach leveraging data-
driven techniques based on deep learning (DL). This strategy offers
programmable design solutions for the generation of desirable kirigami
cutting patterns and their consequent mechanical responses. Inspired
by experimental studies and simulation results regarding kirigami cut-
ting patterns, we have developed DL models that encompass a broad de-
sign space, incorporating a myriad of unique and accessible constitutive
relationships and buckling modes. This data-driven strategy can deliver
accurate predictions of intricate nonlinear constitutive relationships
and buckling modes by effectively managing large datasets.

Our DL models exploit Convolutional Neural Networks (CNNs) to
extract the fundamental features of the kirigami displacement field. The
CNN model successfully navigates the challenges posed by image noise,
identifying geometric symmetries and symmetry-breaking patterns, and
thus effectively classifying buckling patterns. By extracting the stress–
strain curves of kirigami structures, Recurrent Neural Networks (RNNs)
model, utilizing history-dependent hidden states, efficiently handles
sequential data and establishes a connection between geometry and
constitutive relationships. Optimal model performance is achieved with
the configuration of three GRU layers and 500 neurons in the RNN
model. After 200 epochs of iteration, the prediction losses for the
training and test sets are remarkably low, further substantiated by low
metrics for both sets.

We also note that the local buckling characteristics of kirigami
structures are irregular. To account for these, we divide the 3D de-
formed configurations of geometrically symmetric and geometrically
symmetry-breaking kirigami structures into four and eight buckling
modes, respectively. These buckling modes show a strong correlation
with the geometric parameter 𝓁w and are relatively insensitive to
𝓁sp. The robustness of our DL models was validated through tests on
four experimental samples and comparisons between experiments and
simulations, supporting the accuracy of the predictions.

Finally, our design approach enables the design of a wide variety
of kirigami structures to fulfill diverse functional requirements. To
demonstrate the utility of our approach, we present two applications:
one for human back skin and the other for articular cartilage. Our
models suggest that synthetic polymers, when crafted using kirigami
techniques, can substitute for biological materials, offering new pos-
sibilities in terms of their constitutive relationships and modulus of
elasticity. Through our design approach, superior symmetry-breaking
pattern candidates with multimodality are obtained to match various
movement states and accommodate individual differences in health
monitoring and such kirigami with flexibility, comfort, and stretchabil-
ity can be utilized as mechanically flexible and integrated devices for

diagnostics and therapeutics in personalized healthcare. The kirigami
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structures studied in this paper are essentially two-dimensional planar
structures. The structure undergoes out-of-plane deformation by local
buckling during stretching, resulting in three-dimensional structuring.
A large number of studies have investigated the optimization of three-
dimensional structures [70–73]. In the future, the dimensionality of
kirigami structures will continue to be extended to three dimensions
in terms of material selection, loading methods, and highly designable
performance, leading to advanced kirigami materials that maximize
deformation and maximize functionality.
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