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A B S T R A C T

Magneto-mechanical coupling in the growth of soft materials presents challenges due to
the complex interactions between magnetic fields, mechanical forces, and growth-induced
deformations. While growth modeling has been extensively studied, integrating magnetic stimuli
into growth processes remains underexplored. In this work, we develop a 3D governing
system for capturing the coupled magneto-mechanical growth behaviors of soft materials.
Based on the governing system, we propose a finite element framework, where the robustness
and accuracy of the proposed framework are demonstrated through numerical simulations,
including the uniaxial loading of a circular tube, a mesh convergence study, and surface
pattern evolution. We also conduct experiments on surface pattern modulation in magneto-
active soft materials. Specifically, we fabricate film–substrate samples and apply growth-induced
instabilities combined with external magnetic fields to generate tunable surface patterns. To
demonstrate the capabilities of our method, we apply our numerical framework to mimic the
biological morphogenesis, such as the inversion process of the algal genus Volvox. Our study
shows that integrating magneto-mechanical coupling with growth effects allows for flexible
control over surface patterns, significantly enhancing the adaptability and responsiveness of
soft materials. This work paves the way for innovative designs of adaptive and programmable
soft materials, with potential applications in soft robotics, biomimetic structures, and tissue
engineering.

. Introduction

Growth of soft materials refers to changes in the mass or volume of soft material samples under specific conditions (Ambrosi
t al., 2011). These changes may arise from biological factors (e.g., tissue swelling due to injury) or physical factors (e.g., hydrogel
xpansion via water absorption or pneumatic stretching of rubber). The concept of growth extends beyond biological contexts and
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Fig. 1. Magnetic stimulation as a versatile tool in tissue engineering: (a) spatial positioning of magnetized cells (Abdel Fattah et al., 2023); (b) alignment of
extracellular matrix fibers (Hiraki et al., 2021); (c) regulation of growth factor distribution (Li et al., 2018).

plays a crucial role in engineering. In engineering, growth refers to the controlled expansion or contraction of materials to achieve
desired shapes and functionalities, facilitating advancements in areas such as soft robotics, smart materials, and adaptive structures.
Although the factors inducing growth-related deformations are diverse, the resulting effects can generally be attributed to the pre-
strain applied by the internal growth field (growth function) to local material points. Soft materials often undergo differential growth,
characterized by non-uniform or incompatible growth fields. Such incompatibilities can lead to complex mechanical responses,
including surface pattern formation (van Rees et al., 2017; Liu et al., 2024b) and alterations in internal structure (Ambrosi et al.,
2019). The study of growth-induced deformations and morphological evolution in soft materials, encompassing theoretical modeling,
analytical analysis, and numerical simulations, has become one of the most active research areas in soft material mechanics (Li et al.,
2012; Rausch and Kuhl, 2014; Goriely, 2017; Liu et al., 2024a).

Growth in soft materials frequently couples with chemical (Xue et al., 2016; Franze, 2020), diffusive (Chockalingam and Cohen,
2024), or electrical stimuli (Du et al., 2020), which further complicate the mechanical responses of biological tissues. In particular,
magneto-mechanical growth, where magnetic fields interact with mechanical forces to modulate growth behavior, has garnered
significant interest (Gomez-Cruz et al., 2024). Biological experiments have demonstrated that growth phenomena can be manipulated
through the application of magnetic fields (Armstrong and Stevens, 2020). To regulate cell behavior and enhance tissue regeneration,
recent studies have integrated magnetic particles with external fields to generate mechanical forces at the cellular level. Fig. 1
illustrates three key applications of magnetic stimulation in tissue engineering: (a) magnetic nanoparticles can be adhered to
cell membranes, generating magnetized cells with spatial positioning capabilities through external magnetic fields (Abdel Fattah
et al., 2023); (b) Hiraki et al. (2021) developed magnetically alignable fibers to control tissue engineering environments, guiding
morphogenesis, mechanical load distribution, and cell migration; (c) Li et al. (2018) introduced a platform for controlling growth
factor gradients in biomaterials.

The mechanism of magneto-mechanical growth involves the use of magnetic fields to generate mechanical forces that stimulate
cellular activities. By embedding magnetic particles in scaffolds or cells, external magnetic fields apply forces to cell membranes,
activating mechano-transduction pathways. These forces trigger changes in the cytoskeleton, promoting processes such as cell pro-
liferation, migration, and differentiation. The non-invasive nature of magnetic stimulation offers a safer alternative for modulating
cellular processes.

Inspired by biological adaptation mechanisms, researchers have engineered materials incorporating magnetic particles that
exhibit growth-like behaviors, such as magnetically responsive hydrogels (Li et al., 2013; Tang et al., 2019) and magnetic bio-
inks (Vítková et al., 2023). Notable examples include 3D-printed pollen-inspired microrobots with magnetically driven motion (Lee
et al., 2023) and biodegradable bilayer microgrippers responsive to thermal and magnetic stimuli (Kobayashi et al., 2019). These
materials combine magnetic particles with elastic materials to achieve programmable deformations via magnetic and growth
fields, offering advantages in soft robotics and actuators. These magneto-active soft materials are created by embedding magnetic
particles into growth-responsive elastic matrices, enabling programmable deformations through superimposed magnetic and growth
fields. Unlike conventional magneto-active materials, they exhibit unique magnetic actuation and volumetric changes under non-
contact control. This dual responsiveness proves particularly advantageous in inaccessible environments (e.g., biomedical implants)
or extreme conditions (e.g., space robotics), where traditional mechanical interventions are impractical. Their spatiotemporal
programmability drives innovations in adaptive actuators and soft robotic systems (Lee et al., 2023; Moreno-Mateos et al., 2023;
Khalid et al., 2024).

Theoretical models for growth and magneto-active materials address two key aspects:

• growth effects: By introducing a growth tensor, we can represent the growth field within the sample (Ben Amar and Goriely,
2005; Goriely and Ben Amar, 2005; Yavari, 2010). To account for both the material’s elastic response and the growth-induced
changes, the total deformation gradient tensor is decomposed into a product of the elastic deformation tensor and the growth
tensor (Kondaurov and Nikitin, 1987; Rodriguez et al., 1994; Sadik and Yavari, 2017).
2 
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• magnetoelastic coupling: Total energy density is usually decomposed into magnetic and elastic parts (Dorfmann and Ogden,
2004). For the magnetic component, Zhao et al. (2019) first proposed a constitutive model for hard magneto-active elastomers
(ideal hard-magnetic soft materials) within the framework of finite strain theory. The model was validated using several test
cases involving thin-walled structures subjected to pure magnetic loading (Kim et al., 2018; Zhao et al., 2019). However, a
numerical framework for isotropic and incompressible hard magneto-active elastomers proposed by Mukherjee et al. (2021)
revealed that magnetization depends solely on the rotational component of the deformation gradient (Mukherjee et al., 2021).
To address these findings, Yan et al. (2023) proposed a modified magnetic potential energy function in which the total
deformation gradient is replaced by the rotation tensor. Subsequent analysis by Danas and Reis (2024) demonstrated that
the fully dissipative model developed by Mukherjee et al. (2021) can be reduced to the energetic model of Yan et al. (2023),
but not to the earlier model by Zhao et al. (2019). Recent advances include microstructural models accounting for dipole
interactions (Garcia-Gonzalez and Hossain, 2021) and symmetric stress formulations (Dorfmann and Ogden, 2024). For the
elastic part, commonly used hyperelastic constitutive models, such as neo-Hookean, Mooney–Rivlin, and Gent models, can be
employed (Lu et al., 2024). Since the elastic deformation of some typical soft material samples is generally incompressible,
corresponding incompressibility constraints should be introduced into the 3D governing equations.

Numerical methods such as traditional finite element analysis (Firouzi and Amabili, 2024), isogeometric analysis (Wang et al.,
2020), and molecular dynamics (Cleary and Hancock, 2021) have been employed to simulate growth. Growth effects are often
ncorporated through the multiplicative decomposition of the deformation gradient (Himpel et al., 2005; Kadapa et al., 2021).

In addition to purely growth-induced deformation, numerical simulations that account for coupled growth effects have also been
developed. For instance, Hong et al. (2008) proposed a thermodynamic theory to describe the swelling and diffusion effects in
hydrogels, laying a foundation for further developments in this area. Chester et al. (2015) developed an ABAQUS user subroutine
(UEL) to simulate the coupled mechanical-diffusion response of hydrogels. Hu et al. (2024) explored the swelling deformation of
thermally responsive, magnetic-particle-embedded hydrogels under varied temperatures and magnetic fields. Previous work by the
authors addressed the electro-mechanically coupled growth of soft materials (Li et al., 2023a). However, magneto-mechanical growth
coupling remains underexplored.

Developing continuum mechanics-based models that can consider mechanical, magnetic, and growth-induced responses is still
challenging. Although some analytical solutions can be derived from the 3D governing equations, they are often limited to simplified
oundary conditions and constitutive models, rendering them inadequate for capturing the nonlinear behavior encountered in
eal-world applications. Thus, a theoretical model and the corresponding numerical framework for magneto-mechanical coupled
rowth is indispensable for capturing the complex interactions between mechanical forces, magnetic fields, and growth effects in
oft materials.

This study aims to establish a comprehensive theoretical and numerical framework to model the coupled magneto-mechanical
growth behavior in soft materials. Specifically, the objectives are: (1) to propose a theoretical framework that integrates both
magneto-mechanical responses and growth effects in soft materials; (2) to develop a computationally efficient numerical method
capable of handling complex geometries and large deformations; (3) to validate the model through experiments, demonstrating its
applicability in practical contexts such as tissue engineering and biomimetic robotics. This work bridges biological and engineering
perspectives, offering insights into tissue development and enabling advanced control over magneto-active polymers. Potential
applications include studying surface pattern evolution, crease formation, and instability phenomena.

The paper is structured as follows: Section 2 presents governing equations for nonlinear magnetomechanics with growth.
ection 3 details the finite element formulation and numerical implementation. Section 4 validates the framework through analytical

solutions and convergence studies. Section 5 investigates magnetic field effects on surface patterning. Section 6 applies the
framework to analyze Volvox inversion. Conclusions and future directions are discussed in Section 7.

2. Governing equations for nonlinear magnetomechanics with growth effects

In this section, the equations governing the coupled magneto-mechanical growth behavior of hyperelastic materials are discussed.

2.1. Kinematics and the modeling of growth effects

We consider a homogeneous magneto-elastic solid situated in 3D Euclidean space 3. The reference configuration of the solid
body is denoted as 𝑟. By defining an orthogonal frame {𝑂; 𝐞1, 𝐞2, 𝐞3}, the position vector of a material point in 𝑟 is represented as
𝐗 = 𝑋𝑖𝐞𝑖. Here, 𝐞𝑖 (𝑖 = 1, 2, 3) denotes the orthonormal basis vectors in the reference configuration. Due to external forces, magnetic
stimuli, growth effects, or a combination of all, the solid deforms from 𝑟 to the current configuration 𝑡. The position vector of a
material point in 𝑡 is denoted by 𝐱 = 𝑥𝑖𝐞𝑖. The displacement field of the body is defined as

𝐮(𝐗) = 𝐱(𝐗) − 𝐗. (1)

Then, the deformation gradient tensor F can be calculated through

F = 𝜕𝐱
𝜕𝐗

= I + 𝜕𝐮
𝜕𝐗

, (2)

where I = 𝛿 𝐞 ⊗ 𝐞 = 𝐞 ⊗ 𝐞 is the second-order identity tensor.
𝑖𝑗 𝑖 𝑗 𝑖 𝑖
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Fig. 2. Decomposition of the deformation gradient F.

Following the foundational assumptions of growth theory (Kondaurov and Nikitin, 1987; Rodriguez et al., 1994; Ben Amar and
Goriely, 2005), the deformation gradient tensor F is decomposed into

F = AG, (3)

where A is the elastic deformation tensor and G is the growth tensor. Based on this decomposition (3), the deformation of the sample
can be understood in two sequential steps (cf. Fig. 2): first, a transformation from the reference configuration 𝑟 to the stress-free
intermediate configuration 𝑖 under pure growth condition; then, an elastic deformation from 𝑖 to the current configuration 𝑡.
Due to the incompatibility of the growth field, material points in 𝑖 may be discontinuous or overlapping (Skalak et al., 1996).
Therefore, the intermediate configuration is virtual rather than physical.

Assuming that the growth rate is significantly slower than the elastic response of the material, the distribution of the growth
tensor G is considered time-independent. Since the elastic energy of a growing isotropic material depends solely on the symmetric
part of the growth tensor (Goriely, 2017), it is beneficial to constrain the growth tensor to a symmetric form, G = 𝜆𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗 ,
where G = GT. The components 𝜆𝑖𝑗 (𝐗) represent the growth functions along and between these basis directions, varying spatially
as functions of the position vector 𝐗.

2.2. Magnetostatics and constitutive model

Hard-magnetic soft composites are created by embedding hard-magnetic particles, such as neodymium-iron-boron (NdFeB),
within a soft, elastic matrix. Once magnetically saturated, these particles retain a high remanent magnetization, represented by the
magnetization density 𝐌(𝐗) (per unit reference volume). Unlike soft magnetic materials, hard-magnetic particles exhibit significant
resistance to demagnetization, attributed to their intrinsic coercivity. When subjected to an external magnetic field 𝐇𝑎, these
composites experience a magnetic torque due to the interaction between the remanent magnetization and the external field. This
torque generates internal stresses within the matrix, causing reversible deformations of the sample. Accompanying the deformation
of the sample, the magnetization vector has the Euclidean form 𝐦, which is related to 𝐌 through the following equation

𝐦 = 𝐽−1F𝐌, (4)

where 𝐽 = det F. This formulation ensures that the total number of magnetic particles is preserved during volumetric changes.
For instance, when a hydrogel swells in water, the particle density decreases due to volume expansion (𝐽 > 1), consistent with
experimental observations of magneto-active materials. Furthermore, Eq. (4) is grounded in continuum mechanics and theoretically
applicable to describing the kinematics of magnetization vector.

Due to the magnetization of the magnetic particles, a self-induced(or stimulated) magnetic field 𝐇𝑠 is triggered within and around
the sample. We denote the scalar potential of this stimulated magnetic field as 𝜙(𝐱(𝐗)) = 𝛷(𝐗). Then, the magnetic field 𝐇𝑠 can be
expressed as

𝐇𝑠 = − g r ad𝜙 = −F−T Gr ad𝛷 . (5)

The applied magnetic field 𝐇𝑎 is externally specified at every spatial position 𝐱 and remains unchanged regardless of the sample’s
deformation. While the stimulated magnetic field 𝐇𝑠 arises from the magnetization and is influenced by the deformation of the
sample. As the sample undergoes deformation, the magnetization vector 𝐦 changes accordingly, which in turn alters the stimulated
field 𝐇𝑠. This interaction creates a coupling between the mechanical deformation and the internal magnetic responses of the material.
By treating 𝐇𝑎 and 𝐇𝑠 separately, the model effectively distinguishes between the external magnetic influences and the internal
magnetoelastic interactions that arise from the material’s deformation.
4 
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To describe the magnetic response of hard-magnetic soft materials, we adopt the constitutive model proposed by Brown (1966).
The magnetic potential energy per unit reference volume is expressed as

𝛹𝑚(𝐱, 𝜙) = −𝜇0𝐽 (𝐇𝑎 +𝐇𝑠) ⋅𝐦 − 1
2
𝜇0𝐽𝐇𝑠 ⋅𝐇𝑠, (6)

where 𝜇0 is the magnetic permeability of free space, and the magnetization vector 𝐦 is defined within the sample. In fact, Eq. (6)
comprises the magnetostatic energy associated with 𝐇𝑠 and the Zeeman energy associated with 𝐇𝑎, which are expressed in the
following integral forms, respectively:

∫
𝛹 𝑠
𝑚 d𝑉 = ∫𝑟

−𝜇0𝐽
(

𝐇𝑠 ⋅𝐦 + 1
2
𝐇𝑠 ⋅𝐇𝑠

)

d𝑉 + ∫𝑎

−1
2
𝜇0𝐽𝐇𝑠 ⋅𝐇𝑠 d𝑉 ,

∫
𝛹 𝑧
𝑚 d𝑉 = ∫𝑟

−𝜇0𝐽𝐇𝑎 ⋅𝐦 d𝑉 .
(7)

Here,  = 𝑟 + 𝑎 represents the entire 3D space, while 𝑎 denotes the free space. To facilitate the definition of Lagrangian
uantities in the free space, we assume a fictitious extension of the spatial position vector field 𝐱(𝐗) from the sample region into
he surrounding space (Toupin, 1956). This extension allows for a consistent mathematical formulation of the energies across both
he sample and free space regions. It should be noted that, in the absence of stimulated magnetic field 𝐇𝑠, the magnetic potential
nergy function Eq. (6) reduces to the ideal hard-magnetic soft material model proposed by Zhao et al. (2019). That is,

𝛹𝑚 = −𝜇0𝐽𝐇𝑎 ⋅𝐦 = −F𝐌 ⋅ 𝐁𝑎, (8)

where the applied magnetic flux density 𝐁𝑎 = 𝜇0𝐇𝑎.
Zhao’s model has demonstrated good agreement with experimental results under specific loading conditions. Although it has

een widely adopted for its simplicity and computational efficiency, it does not account for the effects arising from the self-induced
agnetic field 𝐇𝑠, which can become significant in cases of strong magnetization or very soft matrix. In contrast, the present
odel incorporates the self-induced magnetic field 𝐇𝑠, providing a more comprehensive framework for analyzing magnetoelastic

nteractions. In Sections 4 and 5, we will compare the two models by conducting a series of simulations under varying magnetic field
strengths and material stiffnesses. Specifically, we aim to evaluate the predictive accuracy of Zhao’s model against our proposed
model in scenarios where 𝐇𝑠 plays a critical role. Furthermore, we will assess the computational efficiency of both models to show
the trade-offs between simplicity and accuracy.

To describe the elastic response of materials incorporating growth effects, the elastic strain energy function is defined as

𝛹𝑒(F,G) = 𝐽𝐺𝛹0(A) = 𝐽𝐺𝛹0(FG−1), (9)

where 𝐽𝐺 = DetG. Eq. (9) provides flexibility in choosing the hyperelastic model, allowing 𝛹0 to represent various constitutive
odels such as neo-Hookean, Mooney–Rivlin, Gent, Ogden, etc. Hossain and Steinmann (2013), Mihai et al. (2017).

In soft materials such as biological tissues and polymeric gels, elastic deformations are typically isochoric. This condition can be
athematically expressed through the following constraint equation:

(F,G) = 𝐽𝐺
(

𝐽𝐴 − 1) = 0, (10)

where 𝐽𝐴 = Det A. The nominal stress tensor S for an incompressible hyperelastic material can then be calculated through the
onstitutive relation:

S =
𝜕 𝛹𝑒(F,G)

𝜕F
+ 𝑝

𝜕(F,G)
𝜕F

= 𝐽𝐺G−1
(

𝜕 𝛹0(A)
𝜕A

+ 𝑝(𝐗)
𝜕 𝑅0(A)
𝜕A

)

, (11)

where 𝑝(𝐗) is the Lagrange multiplier associated with the incompressibility constraint (10).
To model truly incompressible hyperelastic materials within the finite strain framework, the elastic component of the deformation

gradient tensor, denoted as A, is decomposed into volumetric and deviatoric parts (for detailed explanations, see Ogden, 1997; Bonet
and Wood, 2008). This decomposition is expressed as

A = AvolAdev, (12)

where

Avol = 𝐽 1∕3
𝐴 I, Adev = 𝐽−1∕3

𝐴 A. (13)

Based on the above definitions, the modified elastic deformation gradient tensor and the right Cauchy–Green tensor are defined as

modified elastic deformation gradient, A = Adev (14)

modified right Cauchy–Green deformation tensor, C = AT
devAdev. (15)

Generally, the total potential energy for the magneto-active elastomers is divided into three parts: a magneto-mechanical coupling
term 𝛹𝑚, a deviatoric elastic part 𝛹𝑒,dev, and a volumetric elastic part 𝛹𝑒,vol. This decomposition is expressed as

𝛹 = 𝛹𝑚(F,𝐁𝑎) + 𝛹𝑒(A)

= 𝛹𝑚(F,𝐁𝑎) + 𝛹𝑒,dev(Ā) + 𝛹𝑒,vol(𝐽𝐴).
(16)
5 
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For nearly incompressible materials, various forms of the volumetric energy function 𝛹𝑒,vol have been utilized to accurately describe
their behavior (refer to Table 1 in Kadapa and Hossain, 2022 for detailed examples). In scenarios where the material is perfectly
incompressible, the volumetric energy term 𝛹𝑒,vol becomes negligible. To capture the behavior of perfectly incompressible material,
the total potential energy is given as

𝛹 = 𝛹𝑚(F,𝐁𝑎) + 𝛹𝑒,dev(Ā) + 𝑝(F,G), (17)

where 𝑝(F,G) is the function for imposing the incompressibility constraint (10).
Overall, by considering the energy 𝛹𝑚, 𝛹𝑒, incompressibility and external loads, we can write the total energy functional for

truly incompressible magneto-active elastomers as

𝛱(𝐱, 𝜙, 𝑝;𝐗) = ∫

(

𝛹𝑚 + 𝛹𝑒,dev + 𝑝(F,G)
)

d𝑉 −𝛱ext, (18)

where d𝑉 is the differential volume in the reference configuration. The energy contribution from external forces, 𝛱ext, is given by

𝛱ext = ∫𝑟

𝐮 ⋅ 𝐟0 d𝑉 + ∫𝜕𝑟

𝐮 ⋅ 𝐭0 d𝐴, (19)

where 𝐮 = 𝐱−𝐗 denotes displacement vector, d𝐴 is the differential area in the reference configuration, 𝐟0 is the body force per unit
olume in 𝑟, 𝐭0 is the traction force per unit undeformed area, and 𝜕𝑟 is the boundary region of the sample.

2.3. 3D governing system

The total energy functional 𝛱 depends on the independent variables magnetic potential, position vector, and hydrostatic pressure.
To ensure that the magnetic sample attains an equilibrium state, the first variations of 𝛱 with respect to these independent variables
must vanish. From these variational conditions, the three-dimensional (3D) governing equations can be derived. Following our recent

ork (Wang et al., 2025), the results of the variational calculations are presented below.
First, consider the variation with respect to the magnetic scalar potential. Although 𝛷 and 𝜙 represent the same scalar potential

in different configurations, we will adopt 𝛷 as the independent variable for clarity in the following variation calculations. The
variation of 𝛱 with respect to 𝛷 is given by:

𝛿𝛷𝛱 =∫𝑟

[

𝜇0𝐌 ⋅ Gr ad(𝛿 𝛷) − 𝜇0𝐽
(

C−1 Gr ad𝛷)

⋅ (Gr ad(𝛿 𝛷))
]

d𝑉

− ∫𝑎

𝜇0𝐽
(

C−1 Gr ad𝛷)

⋅ (Gr ad(𝛿 𝛷)) d𝑉

=∫𝑟

𝜇0
[

Div
((

𝐌 −
(

𝐽C−1 Gr ad𝛷))

𝛿 𝛷)

− Div (𝐌 − 𝐽C−1 Gr ad𝛷)

𝛿 𝛷]

d𝑉

− ∫𝑎

𝜇0
[

Div
((

𝐽C−1 Gr ad𝛷)

𝛿 𝛷)

− Div (𝐽C−1 Gr ad𝛷)

𝛿 𝛷]

d𝑉 .

(20)

To facilitate derivations, we introduce the Lagrangian form of the stimulated magnetic induction 𝐁𝐿 as follows:

𝐁𝐿 =

{

𝜇0
(

𝐌 −
(

𝐽C−1 Gr ad𝛷))

= 𝜇0𝐽F−1 (𝐦 +𝐇𝑠
)

, in 𝑟,

− 𝜇0𝐽C−1 Gr ad𝛷 = 𝜇0𝐽F−1𝐇𝑠, in 𝑎.
(21)

Using Eq. (21) and applying the Gauss divergence theorem, Eq. (20) simplifies to:

𝛿𝛷𝛱 =∫𝑟

− Div𝐁𝐿𝛿 𝛷 d𝑉 + ∫𝑎

− Div𝐁𝐿𝛿 𝛷 d𝑉

+ ∫𝜕𝑟

(𝐁𝐿 ⋅ 𝐍)𝛿 𝛷 d𝑉 + ∫𝜕𝑎

(𝐁𝐿 ⋅ (−𝐍))𝛿 𝛷 d𝑉

=∫𝑟

− Div𝐁𝐿𝛿 𝛷 d𝑉 + ∫𝑎

− Div𝐁𝐿𝛿 𝛷 d𝑉

− ∫𝜕𝑟

((

𝐁𝑜
𝐿 − 𝐁𝑖

𝐿
)

⋅ 𝐍
)

𝛿 𝛷 d𝐴 + ∫𝜕∞
𝑎

(

𝐁𝐿 ⋅ 𝐍
)

𝛿 𝛷 d𝐴

(22)

where 𝐍 denotes the outward unit normal vector on the boundary 𝜕𝑟 of sample, and the superscripts 𝑜 and 𝑖 represent the values
of the variables on the outer and inner sides of the interface, respectively. The boundary 𝜕𝑎 represents the interface between the
sample and the surrounding free space, and 𝜕∞

𝑎 represents the boundary of the free space at infinity. The magnetic potential 𝛷
must be regular at 𝜕∞

𝑎 . Additionally, the conditions governing the orders of 𝛿 𝛷 and 𝐁𝐿 are 𝛿 𝛷 ∼ 1∕‖𝐗‖ and 𝐁𝐿 ∼ 1∕‖𝐗‖2 as
‖𝐗‖ → ∞, respectively. Thus, the integral over 𝜕∞

𝑎 in Eq. (22) vanishes. In the equilibrium state, the variation equation satisfies
𝛿𝛷𝛱 = 0. Considering the arbitrariness of 𝛿 𝛷, we obtain the following magnetic field equation:

{

Div𝐁𝐿 = 0, in 𝑟 ∪𝑎,
(

𝐁𝑜
𝐿 − 𝐁𝑖

𝐿
)

⋅ 𝐍 = 0, on 𝜕𝑟.
(23)
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Second, consider the variation of 𝛱 with respect to 𝐱:

𝛿𝐱𝛱 =∫𝑟

t r [(S − 𝜇0(𝐌⊗𝐇𝑎) +Q
)

Gr ad(𝛿𝐱)] d𝑉 + ∫𝑎

t r [Q Gr ad(𝛿𝐱)] d𝑉

− ∫𝑟

𝜇0
[

(

g r ad𝐇𝑎
)T F𝐌

]

⋅ 𝛿𝐱 d𝑉 − ∫𝑟

𝛿𝐱 ⋅ 𝐟0 d𝑉 − ∫𝜕𝑟

𝛿𝐱 ⋅ 𝐭0 d𝐴,
(24)

where the quantity Q is introduced to streamline the derivations:

Q = −𝜇0𝐽
2

(

𝐇𝑠 ⋅𝐇𝑠
)

F−1 + 𝜇0𝐽F−1 (𝐇𝑠 ⊗𝐇𝑠
)

. (25)

By applying the Gauss divergence theorem, Eq. (24) can be written as

𝛿𝐱𝛱 = − ∫𝑟

[

Div
(

S − 𝜇0(𝐌⊗𝐇𝑎) +Q
)

+ 𝜇0
(

(

g r ad𝐇𝑎
)T F𝐌

)

+ 𝐟0
]

⋅ 𝛿𝐱 d𝑉

+ ∫𝜕𝑟

[

(

S − 𝜇0(𝐌⊗𝐇𝑎) +Q
)T 𝐍 − 𝐭0

]

⋅ 𝛿𝐱 d𝐴

− ∫𝑎

DivQ ⋅ 𝛿𝐱 d𝑉 + ∫𝜕𝑎

[

QT (−𝐍)
]

⋅ 𝛿𝐱 d𝐴.

(26)

Across a surface of the body, the applied magnetic field 𝐇𝑎 is supposed to be continuous, while the stimulated magnetic field 𝐇𝑠 and
he magnetization vector 𝐦 may have discontinuities. In the absence of surface currents, 𝐇𝑠 should satisfy the condition (Bustamante

et al., 2008)

𝐇𝑜
𝑠 −𝐇𝑖

𝑠 = (𝐧 ⋅𝐦)𝐧, (27)

where 𝐧 = F−T𝐍 denotes the unit outward normal vector on the interface 𝜕𝑡. By using Eqs. (23) and (27), Eq. (26) can be rewritten
as:

𝛿𝐱𝛱 = − ∫𝑟

[

Div
(

S − 𝜇0(𝐌⊗𝐇𝑎) +Q
)

+ 𝜇0
(

(

g r ad𝐇𝑎
)T F𝐌

)

+ 𝐟0
]

⋅ 𝛿𝐱 d𝑉

+ ∫𝜕𝑟

[

ST𝐍 − 𝜇0 (𝐌 ⋅ 𝐍)

(

𝐇𝑎 +
𝐇𝑜

𝑠 +𝐇𝑖
𝑠

2

)

− 𝐭0

]

⋅ 𝛿𝐱 d𝐴,
(28)

where an assumption that the second-order derivatives of 𝜙 are continuous has been made. By considering the arbitrariness of 𝛿𝐱
n the variation equation 𝛿𝐱𝛱 = 0, we obtain the following magneto-mechanical equilibrium equation:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Div
(

S − 𝜇0(𝐌⊗𝐇𝑎) +Q
)

+ 𝜇0
(

(

g r ad𝐇𝑎
)T F𝐌

)

= −𝐟0, in 𝑟,

ST𝐍 − 𝜇0 (𝐌 ⋅ 𝐍)

(

𝐇𝑎 +
𝐇𝑜

𝑠 +𝐇𝑖
𝑠

2

)

= 𝐭0, on 𝜕𝑟.
(29)

To obtain the effective Cauchy stress �̂�, we further rewrite Eq. (29)1 into the Eulerian form. The terms to the left of the equal sign
can be modified as

𝐽 div
[

𝝈 − 1
2
𝜇0

[(

𝐇𝑎 +𝐇𝑠
)

⋅
(

𝐇𝑎 +𝐇𝑠
)

−𝐇𝑎 ⋅𝐇𝑎 − 2𝐇𝑎 ⋅𝐇𝑠
]

I
]

+ 𝐽 div
[

𝜇0
((

𝐇𝑎 +𝐇𝑠
)

⊗
(

𝐇𝑎 +𝐇𝑠
)

−𝐇𝑎 ⊗𝐇𝑠 −𝐇𝑠 ⊗𝐇𝑎 −𝐇𝑎 ⊗𝐇𝑎
)]

− 𝐽 𝜇0
[

div(𝐦)𝐇𝑎 + g r ad (𝐇𝑎
)

𝐦
]

+ 𝜇0𝐽
(

g r ad𝐇𝑎
)T 𝐦

=𝐽 div
[

𝝈 − 1
2
𝜇0

[(

𝐇𝑎 +𝐇𝑠
)

⋅
(

𝐇𝑎 +𝐇𝑠
)

I +
((

𝐇𝑎 +𝐇𝑠
)

⊗
(

𝐇𝑎 +𝐇𝑠
))]

]

− 𝐽 𝜇0
[

div
(

𝐇𝑎
) (

𝐇𝑠 +𝐇𝑎
)

+ div (𝐇𝑠 +𝐌
)

𝐇𝑎
]

,

(30)

where 𝝈 = 𝐽−1FS. According to Eq. (23)1, and the fact that div𝐇𝑎 = 0, the mechanical governing equation Eq. (29)1 can be rewritten
s

div �̂� = −𝐟 , in 𝑡. (31)

The effective Cauchy stress �̂� is defined as the sum of the Cauchy stress 𝝈 and the symmetric Maxwell stress 𝝈𝑚:
�̂� = 𝝈 + 𝝈𝑚,

𝝈𝑚 = −1
2
𝜇0

[(

𝐇𝑎 +𝐇𝑠
)

⋅
(

𝐇𝑎 +𝐇𝑠
)

I +
((

𝐇𝑎 +𝐇𝑠
)

⊗
(

𝐇𝑎 +𝐇𝑠
))]

.
(32)

In the absence of currents, Eq. (31) is consistent with the governing equations presented in Rahmati et al. (2023), which is based
on a nonlinear theoretical framework for modeling the magnetoelectric property of hard magnetic soft electret materials.

Third, we consider the variation with respect to the Lagrange multiplier 𝑝, which is associated with the incompressibility
constraint:

𝛿𝑝𝛱 = (F,G)𝛿 𝑝 d𝑉 , (33)
∫𝑟
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Considering the arbitrariness of 𝛿 𝑝 in the variation equation 𝛿𝑝𝛱 = 0, we obtain the incompressibility constraint Eq. (10).
Combining the results from the variations with respect to 𝛷, 𝐱, and 𝑝, we yield the 3D governing system for the magneto-

mechanical growth solid:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Div
(

S − 𝜇0(𝐌⊗𝐇𝑎) +Q
)

+ 𝜇0
(

(

g r ad𝐇𝑎
)T F𝐌

)

= −𝐟0, in 𝑟,

Div𝐁𝐿 = 0, in 𝑟 ∪𝑎,

(F,G) = 0, in 𝑟,

ST𝐍 − 𝜇0 (𝐌 ⋅ 𝐍)

(

𝐇𝑎 +
𝐇𝑜

𝑠 +𝐇𝑖
𝑠

2

)

= 𝐭0, on 𝜕𝑟,

(

𝐁𝑜
𝐿 − 𝐁𝑖

𝐿
)

⋅ 𝐍 = 0, on 𝜕𝑟,

𝐮 = 𝐮0, on 𝜕Dir ichlet
𝑢 ,

𝜙 = 𝜙0, on 𝜕Dir ichlet
𝜙 ,

(34)

where 𝜕Dir ichlet
𝑢 and 𝜕Dir ichlet

𝜙 denotes the boundary region applied with displacement 𝐮0 and potential 𝜙0. The mechanical equilib-
rium Eq. (34)1, the magnetic field Eq. (34)2, the elastic incompressible constraint (34)3, along with the boundary conditions (34)4
∼(34)7, constitute the 3D governing system of the solid, which contains the unknowns 𝐮, 𝛷 and 𝑝.

Remarks.

• In our model, the growth tensor G(𝐗) is defined as an intrinsic material property independent of external magnetic fields.
However, growth-induced deformation introduces an indirect magneto-mechanical coupling through geometric mediation. The
deformation alters the spatial configuration of the material, which subsequently modifies both the magnetization orientation
and the surrounding magnetic field distribution.

• The growth theory employed in this study treats growth as pre-strain, enabling the model to accommodate complex scenarios
such as anisotropic and non-uniform growth and geometric reconstructions. In contrast, modeling growth as initial pre-stress
neglects the intermediate configuration 𝑖, limiting its applicability to more intricate phenomena like material remodeling. Ad-
ditionally, treating growth as pre-strain inherently captures physical features of the growth process, such as volume expansion.
While pre-stress and pre-strain can serve as interchangeable loading variables in certain contexts, the implementation of pre-
strain is notably more straightforward in numerical simulations and experimental setups. In Section 5, we utilized pre-strain
to simulate growth effects for experimental convenience; however, this approach is merely an approximation of the grown
configuration and does not fully represent the growth mechanism as described by finite growth theory. For scenarios involving
time-dependent, inhomogeneous, or anisotropic growth, the growth theory offers a more accurate and scalable prediction of
the system’s response.

3. Mixed finite element framework

To simulate material behavior influenced by mechanical forces, magnetic fields, and growth effects, this section introduces a
inite element framework with the following main steps: (1) discretization of the unknown variables 𝐮, 𝜙 and 𝑝; (2) derivation of
he element stiffness matrix; (3) implementation through the ABAQUS subroutine UEL.

We choose the mixed formulation because it effectively handles the incompressibility constraint that arises in many material
simulations, such as those involving soft tissues, rubber-like materials, and other hyperelastic materials. The mixed formulation
decouples the displacement and pressure, allowing for accurate treatment of both deviatoric and volumetric components of
deformation. This approach avoids issues such as volumetric locking, improves pressure accuracy, ensures numerical stability, and
applies efficiently to a wide range of material regimes, from compressible to fully incompressible.

Since we are only interested in the incompressible (Poisson’s ratio 𝜈 is 0.5) or quasi-incompressible (0.45 ≤ 𝜈 < 0.5) elastic
eformations in this work, we adopt the perturbed Lagrangian form as used in Kadapa and Hossain (2022) instead of the generalized

mixed formulation used for computational growth (Kadapa et al., 2021). The total energy functional 𝛱 is then expressed as

𝛱(𝐱, 𝜙, 𝑝;𝐗) = ∫𝑟

(

𝛹𝑚 + 𝛹𝑒,dev + 𝛹𝑒,vol + 𝛹PL
)

d𝑉 −𝛱ext, (35)

where 𝛹PL represents the function enforcing the incompressibility constraint (10) using the perturbed Lagrangian method. Specifi-
ally, 𝛹PL is defined as

𝛹PL = 𝑝𝐽𝐺
(

𝐽𝐴 − 1) − 𝐽𝐺
𝑝2

2𝜅
(36)

where 𝜅 is the bulk modulus of the material. In the truly incompressible case, i.e., when 𝜈 = 0.5, or 𝜅 = ∞, both 𝛹𝑒,vol and the term
2∕(2𝜅) vanish.
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3.1. Discretization of the unknown variables

For the finite element discretization, we take the approximations for displacement 𝐮, magnetic potential 𝜙 and pressure 𝑝 as

𝐮 = 𝐍𝐮�̄�, 𝜙 = 𝐍𝜙�̄�, and 𝑝 = 𝐍𝑝�̄�, (37)

where �̄�, �̄� and �̄� are the nodal degrees of freedom (DOF) for displacement, potential and pressure, respectively. The element basis
unctions 𝐍𝐮, 𝐍𝜙 and 𝐍𝑝 for displacement and pressure are given by

𝐍𝐮 =
⎡

⎢

⎢

⎣

1𝑁𝑢 0 0 ⋯ 𝗇𝗎𝑁𝑢 0 0
0 1𝑁𝑢 0 ⋯ 0 𝗇𝗎𝑁𝑢 0
0 0 1𝑁𝑢 ⋯ 0 0 𝗇𝗎𝑁𝑢

⎤

⎥

⎥

⎦

, (38a)

𝐍𝜙 =
[ 1𝑁𝜙

2𝑁𝜙 ⋯ 𝗇𝜙𝑁𝜙
]

, (38b)

𝐍𝑝 =
[ 1𝑁𝑝

2𝑁𝑝 ⋯ 𝗇𝗉𝑁𝑝
]

, (38c)

where 𝗇𝗎, 𝗇𝜙 and 𝗇𝗉 denote the number of basis functions for nodal DOF. With these approximations, the first variations of the
solution variables become

𝛿𝐮 = 𝐍𝐮 𝛿�̄�, 𝛿 𝜙 = 𝐍𝜙 𝛿�̄�, and 𝛿 𝑝 = 𝐍𝑝 𝛿�̄�. (39)

For an individual element, the divergence and gradient operations are introduced below. The gradient of the displacement field
s represented by

∇𝑥𝐮 = 𝑢𝑖,𝑗 =
[

𝜕 𝑢𝑥
𝜕 𝑥

𝜕 𝑢𝑦
𝜕 𝑥

𝜕 𝑢𝑧
𝜕 𝑥

𝜕 𝑢𝑥
𝜕 𝑦

𝜕 𝑢𝑦
𝜕 𝑦

𝜕 𝑢𝑧
𝜕 𝑦

𝜕 𝑢𝑥
𝜕 𝑧

𝜕 𝑢𝑦
𝜕 𝑧

𝜕 𝑢𝑧
𝜕 𝑧

]T
= 𝐆𝐮�̄�, (40)

where 𝐆𝐮 is the gradient-displacement matrix. Similarly, the gradient of the magnetic potential in the current configuration is given
y

∇𝑥𝜙 = 𝜙,𝑖 =
[

𝜕 𝜙
𝜕 𝑥

𝜕 𝜙
𝜕 𝑦

𝜕 𝜙
𝜕 𝑧

]T
= 𝐆𝜙�̄�, (41)

where 𝐆𝜙 is the gradient-potential matrix.
To express the divergence of the displacement in vector form, we introduce a divergence-displacement matrix 𝐃𝐮 as

∇𝑥 ⋅ 𝐮 = 𝑢𝑖,𝑖 =
𝜕 𝑢𝑥
𝜕 𝑥 +

𝜕 𝑢𝑦
𝜕 𝑦 +

𝜕 𝑢𝑧
𝜕 𝑧 = 𝐃𝐮�̄�. (42)

Details of the above formulations can be found in Kadapa et al. (2021), Li et al. (2023a).
By substituting (39) into the first variation of 𝛱 given in Eqs. (26), (22) and (33), the resulting semi-discrete equations for the

agneto-mechanical growth problem with a mixed formulation can be written as
𝐅int
𝐮 − 𝐅ext

𝐮 = 𝟎,
𝐅int
𝜙 = 𝟎,

𝐅int
𝑝 = 𝟎,

(43)

where 𝐅int
𝐮 , 𝐅int

𝜙 and 𝐅int
𝑝 are the internal force vectors for displacement, magnetic potential and pressure, respectively. 𝐅ext

𝐮 is the
vector of external forces. These vectors are given as

𝐅int
𝐮 = ∫𝑡

𝐆T
𝐮 �̂� d𝑣,

𝐅int
𝜙 = ∫𝑡

𝐆T
𝜙𝜇0

(

𝐦 +𝐇𝑠
)

d𝑣,

𝐅int
𝑝 = ∫𝑡

𝐍T
𝑝𝐽

−1
𝐴

(

𝐽𝐴 − 1 − 𝑝
𝜅

)

d𝑣,

𝐅ext
𝐮 = ∫𝑟

−𝐍T
𝐮 𝐟0 d𝑉 + ∫𝜕𝑟

𝐍T
𝐮 𝐭0 d𝐴.

(44)

For the ease of computer implementation of the finite element formulation, the effective Cauchy stress �̂� is written as a column
vector

�̂� = �̂�𝑖𝑗 =
[

�̂�11 �̂�21 �̂�31 �̂�12 �̂�22 �̂�32 �̂�13 �̂�23 �̂�33
]T . (45)
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3.2. Newton–Raphson scheme and the element stiffness matrix

The coupled nonlinear Eqs. (43) are solved using an incremental iterative approach. The subscripts 𝑛 and 𝑛 + 1 denote the
previously converged and current load steps, respectively. The displacement, magnetic potential, and pressure at the 𝑛t h converged
oad step are represented by 𝐮𝑛 and 𝝓𝑛, 𝐩𝑛, respectively. The corresponding variables at the current load step are computed as

𝐮𝑛+1 = 𝐮𝑛 + 𝛥𝐮,
𝝓𝑛+1 = 𝝓𝑛 + 𝛥𝝓,

𝐩𝑛+1 = 𝐩𝑛 + 𝛥𝐩,
(46)

where 𝛥𝐮, 𝛥𝝓, and 𝛥𝐩 represent the load step increments from step 𝑛 to 𝑛+ 1. In our simulation, the growth tensor G is considered as
n input variable, which is updated at each load step. By adopting the Newton–Raphson scheme, the solution variables involved in
he coupled nonlinear Eqs. (43) are solved iteratively at each load step. The superscripts 𝑘 and 𝑘+ 1 denote the previous and current

iterations, respectively. With iterative increments denoted by 𝛥𝐮, 𝛥𝝓 and 𝛥𝐩, the variables at the current iteration are expressed as:
𝐮(𝑘+1)𝑛+1 = 𝐮𝑛 + 𝛥𝐮(𝑘+1) = 𝐮𝑛 + 𝛥𝐮(𝑘) + 𝛥𝐮 = 𝐮(𝑘)𝑛+1 + 𝛥𝐮,
𝝓(𝑘+1)
𝑛+1 = 𝝓𝑛 + 𝛥𝝓(𝑘+1) = 𝝓𝑛 + 𝛥𝝓(𝑘) + 𝛥𝝓 = 𝝓(𝑘)

𝑛+1 + 𝛥𝝓,
𝐩(𝑘+1)𝑛+1 = 𝐩𝑛 + 𝛥𝐩(𝑘+1) = 𝐩𝑛 + 𝛥𝐩(𝑘) + 𝛥𝐩 = 𝐩(𝑘)𝑛+1 + 𝛥𝐩,

(47)

where 𝑘 ranges from 1 to the maximum iteration count 𝑘max.
In order to solve the coupled nonlinear Eqs. (43) using the Newton–Raphson scheme, we need to linearize 𝛿 𝛱 . By taking the

second variation d(⋅) of 𝛱 , we have

d(𝛿 𝛱) =∫𝑡

(

𝛿 𝑢𝑖,𝑗 e𝑖𝑗 𝑘𝑙 d𝑢𝑘,𝑙 + 𝛿 𝑢𝑖,𝑗 p𝑖𝑗 𝑘 d𝜙,𝑘 + 𝛿 𝜙,𝑖 p̂𝑖𝑗 𝑘 d𝑢𝑗 ,𝑘 + 𝛿 𝜙,𝑖 d𝑖𝑗 d𝜙,𝑗
)

d𝑣

+ ∫𝑡

(

𝛿 𝑝 d𝑢𝑖,𝑖 + 𝛿 𝑢𝑘,𝑘 d𝑝 − 𝛿 𝑝 𝐽𝐺
𝜅 𝐽 d𝑝

)

d𝑣,
(48)

where e𝑖𝑗 𝑘𝑙 is the fourth-order material tangent tensor, p𝑖𝑗 𝑘 and p̂𝑖𝑗 𝑘 are the third-order coupling tensors, d𝑖𝑗 is the magnetic
ermeability tensor, and they are given in Appendix A.

By substituting the corresponding finite element approximations into (48), we obtain the following discrete matrix system for
ncrements 𝛥𝐮, 𝛥𝝓 and 𝛥𝐩 at the (𝑘 + 1)t h iteration:

⎡

⎢

⎢

⎣

𝐊𝐮𝐮 𝐊𝐮𝜙 𝐊𝐮𝑝
𝐊𝜙𝐮 𝐊𝜙𝜙 𝟎
𝐊𝑝𝐮 𝟎 𝐊𝑝𝑝

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝛥𝐮
𝛥𝝓
𝛥𝐩

⎫

⎪

⎬

⎪

⎭

= −
⎧

⎪

⎨

⎪

⎩

𝐑𝐮
𝐑𝜙
𝐑𝑝

⎫

⎪

⎬

⎪

⎭

, (49)

where the components of the element matrix are defined as:

𝐊𝐮𝐮 = ∫𝑡

𝐆T
𝐮e𝐆𝐮 d𝑣,

𝐊𝐮𝜙 = ∫𝑡

𝐆T
𝐮p𝑖𝑗 𝑘𝐆𝜙 d𝑣 = 𝐊T

𝜙𝐮,

𝐊𝐮𝑝 = ∫𝑡

𝐃T
𝐮𝐍𝑝 d𝑣 = 𝐊T

𝑝𝐮,

𝐊𝜙𝜙 = ∫𝑡

𝐆T
𝜙d𝑖𝑗𝐆𝜙 d𝑣,

𝐊𝑝𝑝 = −∫𝑡

𝐍T
𝑝𝐍𝑝

𝐽𝐺
𝜅 𝐽 d𝑣.

(50)

𝐑𝐮, 𝐑𝜙 and 𝐑𝑝 denote the residuals, which are the differences between the internal and external force vectors:
𝐑𝐮 = 𝐅int

𝐮 (𝐮(𝑘)𝑛+1,𝝓
(𝑘)
𝑛+1,𝐩

(𝑘)
𝑛+1) − 𝐅ext

𝐮
|

|𝑛+1 ,

𝐑𝜙 = 𝐅int
𝜙 (𝐮(𝑘)𝑛+1,𝝓

(𝑘)
𝑛+1,𝐩

(𝑘)
𝑛+1),

𝐑𝑝 = 𝐅int
𝑝 (𝐮(𝑘)𝑛+1,𝝓

(𝑘)
𝑛+1,𝐩

(𝑘)
𝑛+1).

(51)

3.3. Magneto body immersed in free space

In the finite element model, we need to account for the surrounding free space to capture the effect caused by 𝐇𝑠. For variables
in the free space, we are usually more concerned with the distribution of the magnetic potential rather than the displacement
field in the free space. It raises the question of how to treat displacements in a region that, physically, is purely magnetic and
should not sustain appreciable mechanical stresses. Incorrect modeling of the free space domain’s displacement field can inflate the
computational cost, introduce artificial boundary effects, and potentially degrade numerical stability or accuracy. In practice, at
least three approaches are commonly employed to address this issue:
10 
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• Modeling free space as a soft elastic medium. One assigns a low elastic modulus to the free space domain and solves for both the
displacement and the magnetic potential throughout the entire computational domain. However, a large number of additional
elements must be used to mesh the free space, increasing computational costs, particularly in 3D problems. Even if the elastic
modulus of the free space is very low, the presence of a nonzero stiffness can induce unexpected mechanical interactions along
the interface between the magnetizable body and the free space. Hence, this method is often relegated to preliminary or purely
qualitative analyses where computational efficiency and high-fidelity results are not the primary concern.

• Staggered updating of free space displacements. A more refined idea, as exemplified in the work of Pelteret et al. (2016),
is to decouple the displacement field in the free space from that in the magneto-active body through a staggered solution
strategy. Specifically, displacements in the body are computed first by assuming that there is no motion in the free space.
Once the body’s displacement is determined, a virtual displacement field in the surrounding free space is updated to prevent
mesh interpenetration. This approach allows the free space mesh to ‘‘follow’’ the body without introducing large or physically
irrelevant stresses. However, for problems involving large deformations or strongly coupled magneto-mechanical effects, the
staggered procedure may require many iterations and can suffer from convergence difficulties.

• Nonlocal multi-point constraint (MPC) approach. In this approach, a linear constraint is applied to each node in the free space
𝑎 relative to the displacement degrees of freedom at the magneto-active body’s boundary 𝜕𝑟. Every node in the free space
is constrained to move linearly based on the displacements at its nearest node on the body’s boundary. As a result, the free
space ‘‘follows’’ the deformation of the body without needing to resolve the displacement field. Through this MPC constraint,
the mechanical stiffness of free space is effectively eliminated, and the global stiffness matrix remains well-conditioned.

To implement this MPC method, we first need to pair each node in the free space with its nearest counterpart on the boundary of
he body. This pairing can be achieved using a nearest-neighbor search algorithm, such as the Nearest function in Mathematica.
ext, following the work of Rambausek et al. (2022), we define a distance coefficient for each pair of nodes. Specifically, the distance
oefficient, denoted as 𝑑(𝑛)𝑖 , is given by the following equation:

𝑑(𝑛)𝑖 = 1 −
|

|

|

𝐗(𝑛)
𝑖 |𝜕𝑟

− 𝐗(𝑛)
𝑖 |𝑎

|

|

|

0.5𝐿𝑎
, (52)

where 𝑛 is the index of the paired nodes, 𝐿𝑎 represents the length of the free space domain, and the subscript 𝑖 denotes the coordinates
index (ranging from 1 to 3 in 3D space). In fact, 𝐿𝑎 can be chosen to be any value as long as the condition 𝑑(𝑛)𝑖 > 0 is satisfied. Once
the distance coefficients are computed, we apply a constraint to each node pair, linking the node on the boundary of the body to
ts corresponding node in the free space, which is expressed as:

𝑢(𝑛)𝑖 |𝑎
= 𝑑(𝑛)𝑖 𝑢(𝑛)𝑖 |𝜕𝑟

. (53)

By enforcing this constraint, the displacement DOFs of the free space nodes are effectively eliminated. It greatly reduces com-
putational costs and ensures that the convergence rate and accuracy of the magnetomechanical solutions are maintained. The
implementation of this approach can be efficiently handled using a direct elimination technique, such as the built-in *EQUATION
command in ABAQUS, which allows for the elimination of these displacement DOFs.

3.4. Element type and implementation

We employ linear elements in this work, specifically using an 8-node hexahedral element (C3D8) for the displacement, magnetic
potential, and pressure fields. The choice of C3D8 is based on its ability to capture the necessary physical phenomena with a
easonable computational cost, while maintaining a sufficient level of accuracy in modeling both mechanical and electromagnetic
ields. This mixed element should satisfy the LBB (Ladyzhenskaya–Babuska–Brezzi) condition in obtaining accurate and stable
olutions (Brezzi and Bathe, 1990; Brezzi and Fortin, 2012; Nemer et al., 2021). To achieve this, the Gauss quadrature degree

for the pressure field is set one degree lower than for the displacement and magnetic potential fields. The combination of elements
or displacement, potential, and pressure is thus denoted as Q1/Q1/Q0.

We implement the proposed finite element formulation for the coupled magneto-mechanical growth problems using the UEL
user-defined element) subroutines in ABAQUS. The UEL allows for greater flexibility in defining element order, basis functions,
nd material tangent stiffness, making it ideal for modeling complex coupled physical phenomena.

The input files and UEL subroutines used to generate the results presented in this work are available in the GitHub repository,
he link to which can be found in the Supplementary material section.

4. Verification and convergence test

In this section, we present a series of tests to validate the proposed finite element framework for simulating material behavior
influenced by mechanical forces, magnetic fields, and growth effects. In the first example, we consider the uniaxial loading of a tube
nder an external magnetic field. In the absence of the stimulated magnetic field 𝐇𝑠, the presented model in Section 2 reduces to

Zhao’s model (Zhao et al., 2019), for which an analytical solution is derived. To evaluate the effect of the stimulated magnetic field
n the deformation of the tube, we conduct three cases of simulations: (1) without 𝐇𝑠 and free space; (2) without 𝐇𝑠 but with free
pace; and (3) with 𝐇𝑠 and free space. In the second example, we consider the compression of a block to check the convergence
erformance of the proposed finite element framework.
11 
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Fig. 3. Deformation of a hard magnetic tube under an external magnetic field: (a) reference configuration of the tube with 𝐌 along the 𝑍-axis; (b) elongation
due to external 𝐁𝑎 along the 𝑍-axis; (c) shortening under external 𝐁𝑎 oriented in the negative 𝑍-direction.

4.1. Uniaxial loading of a tube

As shown in Fig. 3, we consider the axisymmetric deformation of a circular tube, which has a reference configuration 𝑟 =
𝑅 × 𝛩 × 𝑍 = [𝑅𝑖, 𝑅𝑜] × [0, 2𝜋] × [0, 𝐿]. Here, 𝐿 denotes the length of the tube, 𝑅𝑖 the inner radius, and 𝑅𝑜 the outer radius. Both
the magnetization density 𝐌 = 𝑀3𝐞3, and the external magnetic flux density 𝐁𝑎 = 𝐵3𝐞3 are constant and aligned along the 𝑍-axis.
For simplicity, we assume the tube experiences isotropic growth, yielding a diagonal growth tensor G = 𝑔I, where 𝑔 is the growth
factor. To generate a homogeneous uniaxial deformation along the 𝑍-axis, the surface at 𝑍 = 0 is constrained in the 𝑍-direction.
In addition, the tube is free from both body forces and surface reactions.

In the absence of the stimulated magnetic field 𝐇𝑠, our presented model reduces to Zhao’s model, and the analytical solution
can be derived below. With the current position vector defined as 𝐱 = 𝑟𝐞𝑟 + 𝑍 𝑙∕𝐿𝐞3, the total deformation gradient tensor and the
elastic deformation gradient tensor are given by

F = diag
( 𝜕 𝑟
𝜕 𝑅 , 𝑟

𝑅
, 𝑙
𝐿

)

, A = 𝑔−1 diag
( 𝜕 𝑟
𝜕 𝑅 , 𝑟

𝑅
, 𝑙
𝐿

)

. (54)

Considering the incompressibility condition for the elastic deformation gradient tensor, 𝐽𝐴 = 1, from Eq. (10), these expressions
simplify to

F = diag
(

𝑔3 𝐿𝑅
𝑙 𝑟 , 𝑟

𝑅
, 𝑙
𝐿

)

, A = diag
(

𝑔2 𝐿𝑅
𝑙 𝑟 , 𝑟

𝑔 𝑅 , 𝑙
𝑔 𝐿

)

. (55)

For quantitative analysis, we employ a truly incompressible neo-Hookean constitutive model, where the elastic strain energy
function is defined as

𝛹𝑒,dev = 𝐽𝐺
𝐺
2
(

𝐼C − 3) , (56)

where 𝐺 is the shear modulus, and 𝐼C denotes the first invariant of the elastic right Cauchy–Green tensor C. Subsequently, the
effective Cauchy stress is derived as follows:

�̂� = 𝐺 𝐽−5∕3
𝐴

(

AAT − 1
3
𝐽 2∕3
𝐴 𝐼CI

)

− 𝐽−1
𝐺 F𝐌⊗ 𝐁𝑎 + 𝑝. (57)

By substituting 𝐽𝐴 = 1, the non-zero components of �̂� simplify to
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�̂�𝑟𝑟 = 𝐺
(

𝑔4𝐿2𝑅2

𝑙2𝑟2
− 1

3
𝐼C

)

+ 𝑝,

�̂�𝜃 𝜃 = 𝐺
(

𝑟2

𝑔2𝑅2
− 1

3
𝐼C

)

+ 𝑝,

�̂�𝑧𝑧 = 𝐺
(

𝑙2

𝑔2𝐿2
− 1

3
𝐼C

)

+ 𝑝 − 𝐽−1
𝐺 𝐵3𝑀3

𝑙
𝐿
.

(58)

In the absence of external mechanical forces, the mechanical equilibrium requires �̂�11 = �̂�22 = �̂�33 = 0. From Eqs.(58)1 and (58)2,
the hydrostatic pressure and circumferential strain 𝑟∕𝑅 can be derived as

𝑝 = −3𝑔 𝐿
𝑙
, 𝑟

𝑅
= 𝑔3∕2

√

𝐿
𝑙
. (59)

By substituting Eq. (59) into (58)3, we obtain the nonlinear relationship between the external magnetic field, growth factor, and
the resulting elongation (or shortening) of the tube as

𝑙3 −
𝐵3𝑀3 𝑙2 = 𝑔3. (60)
𝐿3 𝑔 𝐺 𝐿2
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Fig. 4. Mesh of the tube and free space.

To evaluate the effect of the stimulated magnetic field on the deformation of the tube, we conduct three cases of simulations:
Case (1): without 𝐇𝑠 and free space.
To facilitate comparison and ensure generality, the system is non-dimensionalized using the following characteristic scales. In

the numerical simulation, the geometry of the reference configuration is set as 𝐿 ∶ 𝑅𝑖 ∶ 𝑅𝑜 = 2 ∶ 1 ∶ 2. The magnitude of
the external magnetic field 𝐵3, shear modulus 𝐺, and magnetization density 𝑀3 are set appropriately so that the dimensionless
magnetic flux density 𝐵3𝑀3∕𝐺 ranges from −1 to 1. The growth factor is set as 𝑔 = {0.8, 1.0, 1.2} to investigate its effect on the
tube’s deformability under magnetic stimulation. To enhance computational efficiency, only a quarter of the tubular geometry is
modeled. This reduced model is discretized into 1911 8-node hexahedral elements, balancing computational cost with accuracy.
Symmetric boundary conditions for displacement are prescribed on the cross-sections. During the loading process, the tube deforms
as the growth factor 𝑔 varies from 1 to its target value. Subsequently, the external magnetic field is applied while maintaining the
growth factor 𝑔 at its target value.

Case (2): without 𝐇𝑠 but with free space.
For a magnetized body in free space, the free space domain should be sufficiently large to capture relevant effects. As shown

in Fig. 4, we choose a free space domain five times larger than the tube’s characteristic dimensions. To avoid abrupt transitions in
element size, a transition region of twice the tube size is introduced between the tube and the free space. The tube is discretized
into 7644 elements (1911 for a quarter) as in Case (1), and the free space into 75832 elements. To minimize any artificial mechanical
influence, the free space is modeled as a soft elastic medium with shear modulus 𝐺𝑎 ≪ 𝐺 (e.g., 𝐺𝑎 ≈ 10−15𝐺). A nonlocal multi-point
constraint (MPC) method further reduces the stiffness of the free space and ensures that the magnetic boundary conditions mimic an
infinite external domain. In the 𝑍-direction, we set 𝐿𝑎 = 20, matching the overall free space scale. For 𝑋 and 𝑌 directions inside the
tube, we employ 𝐿𝑎 = 2, consistent with the smaller inner free space region. It is anticipated that the MPC method will effectively
eliminate the mechanical stiffness of the free space, ensuring that the tube’s response remains consistent with the results obtained
in Case (1).

Case (3): with 𝐇𝑠 and free space.
In this case, although we keep the dimensionless ratio 𝐵3𝑀3𝐺−1 in the same range as before, the stimulated mechanical

and magnetic response may still vary with different choices of 𝐺 and 𝑀3. To ensure realistic parameter magnitudes, we fix the
magnetization density at 𝑀3 = 120 k A∕m and let 𝐺 = {60, 120, 240} k Pa. The external field 𝐵3 is then adjusted so that 𝐵3𝑀3𝐺−1

remains between −1 and 1. All other finite element settings follow Case (2). While it is feasible to use strictly SI units for magneto-
growth problems, the large disparity between mechanical and magnetic parameter magnitudes can lead to ill-conditioned numerical
systems. In particular, the stiffness matrix may exhibit entries differing by many orders of magnitude, making convergence under
the Newton–Raphson scheme more challenging. To mitigate these issues, we adopt a scaled unit system. Specifically, we measure
the applied magnetic flux density 𝐁𝑎 in mT, and the fields 𝐇𝑎 and 𝐇𝑠 in kA/m. Correspondingly, the magnetic permeability of free
space is taken as 0.4𝜋 N ⋅ (k A)−2. This approach keeps the mechanical and magnetic variables in comparable ranges and promotes
robust convergence.

The relationship between the uniaxial stretch 𝑙∕𝐿 and the dimensionless magnetic flux density 𝐵3𝑀3∕𝐺 is illustrated in Fig. 5(a)–
(c). As illustrated in Figs. 5 (a) and (b), the results obtained from the (case of in the absence of 𝐇 ) closely align with the analytical
𝑠
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Fig. 5. Comparison of analytical (solid lines) and numerical results (scatter points) of the uniaxial stretch 𝑙∕𝐿 versus dimensionless magnetic flux density
𝐵3𝑀3𝐺−1 for 𝑔 = {0.8, 1.0, 1.2}: (a) Case 1; (b) Case 2; (c) Case 3. (d) Magnetic potential distribution for Case 3 with 𝐺 = 60 k Pa.

solution. The error between the analytical and numerical results is also represented by the dashed lines in the figures, they show
similar trends for different growth factors 𝑔. This result shows that the surrounding mesh has a negligible effect on the tube’s
deformation. Because the stiffness of the mesh in the free space is effectively eliminated by the nonlocal MPC method. In Case (3)
(Fig. 5(c)), 𝐇𝑠 is taken into account. The solid lines still represent the analytical solution (without 𝐇𝑠), whereas the dashed lines
correspond to numerical solutions at different shear moduli 𝐺 = {60, 120, 240} k Pa. When 𝐺 = 240 k Pa (darker dashed lines), the ratio
𝐺∕𝑀3 is closer to that in Zhao et al. (2019), and the deviations from the analytical curve are modest. However, for softer materials
(e.g., 𝐺 = 60 k Pa), 𝐇𝑠 influences the overall deformation due to the lower elastic resistance. In other words, softer structures are
more sensitive to additional magnetic fields generated by the magnetized body itself. The results also indicate that the effect of 𝐇𝑠
can be reasonably neglected for relatively stiff soft materials. In scenarios where the distribution of 𝐇𝑠 is not of primary interest, a
simplified model can be employed to significantly reduce computational cost while maintaining sufficient accuracy.

Fig. 5(d) shows the magnetic potential distribution in the free space for 𝐺 = 60 k Pa. Notably, for certain combinations of growth
factor and magnetic flux density, the outer tube boundary undergoes inward concavity, particularly when 𝐵3𝑀3𝐺−1 = −1 and
𝑔 = 0.8. Such feature cannot be captured by models that ignore 𝐇𝑠. Similar effects have also been observed experimentally (see,
e.g., Moreno-Mateos et al., 2023). This behavior arises because the local distribution of 𝐇𝑠 near the edges becomes non-uniform,
leading to heterogeneous stresses and an outward pull on the tube boundaries. In fact, residual magnetization in hard-magnetic
elastomers can cause spatial variations in the magnetic field, promoting a non-uniform deformation mode, especially in very soft
samples.

Overall, for a given increment of magnetic flux density 𝛥𝐵3𝑀3𝐺−1, the stretch increment 𝛥𝑙∕𝐿 is inversely related to the growth
factor 𝑔. At the same level of magnetic flux density, the tube with a smaller 𝑔 is easier to stretch or compress than that with a higher
𝑔. In fact, the tube shrinks when 𝑔 < 1, which leads to the condensation of the magnetization density 𝐌. Consequently, tubes with
14 



Z. Li et al.

h

d
d

c

s
a

a

r
e
o
w

g
t

t
d

Journal of the Mechanics and Physics of Solids 200 (2025) 106089 
smaller 𝑔 experience greater extension or compression under the same 𝐵3𝑀3𝐺−1 level, demonstrating that the interplay between
growth, magnetization, and material stiffness significantly affects the overall deformation response.

4.2. Mesh convergence study

In this section, we investigate the mesh convergence of the proposed mixed finite element framework applied to hard magnetic
yperelastic materials that incorporate growth effects. To evaluate the robustness and accuracy of our numerical formulation, we

utilize the benchmark example introduced by Reese et al. (1999). This benchmark considers a 3D block under large compressive
eformations, providing a test for the performance of the numerical framework when handling significant nonlinearities and complex
eformation behaviors in such materials. As shown in Fig. 6(a), we investigate the compression of a 3D block with a reference

configuration 𝑟 = 𝑋 × 𝑌 ×𝑍 = [0, 1] × [0, 1] × [0, 1]. The magnetization density 𝐌 = 𝑀3𝐞3 aligns with the 𝑍-axis, while the external
magnetic flux density 𝐁𝑎 = 𝐵3𝐞3 (𝐵3 < 0) is directed along the negative 𝑍-axis. For simplicity, we assume that the block experiences
isotropic growth, yielding a diagonal growth tensor G = 1.05 I. The growth functions in the growth tensors are incorporated as
state variables in the subroutine, changing from 1 to the target values during the growth process. This linear evolution can generate
excessive residual stresses, leading to instability phenomena. Our previous study (Li et al., 2023b) demonstrated that different
growth paths affect the distribution of residual stresses, which may drive the sample into alternative stable morphologies when
these stresses are sufficiently large. Unless specified, the loading path of growth function in our simulation is linear by default.
Symmetric displacement boundary conditions are prescribed on the surfaces 𝑋 = 0, 𝑌 = 0, and 𝑍 = 0, while the top face has
onstraints 𝑢𝑥 = 𝑢𝑦 = 0. To generate significant compression at the point (0, 0, 1), only a quarter of the block [0, 0.5] × [0, 0.5] × [0, 1]

is magnetized. For this benchmark problem, the material model is chosen as an incompressible neo-Hookean model with a shear
modulus of 𝐺 = 50 k Pa. The magnetization density is set to 𝑀3 = 100 k A∕m.

We investigate mesh convergence under two scenarios: with and without free space. In the first scenario, the free space
surrounding the block is set to be five times larger than the block’s dimensions. To evaluate the solution’s accuracy and stability,
we incrementally refine the mesh. Each edge of the block is subdivided into {2, 4, 8, 12} elements, resulting in hexahedral meshes
with {8, 64, 512, 1728} elements, respectively. For the scenario with free space, the total number of mesh elements increases to
{216, 1728, 13824, 21952} due to the additional free space region. The block is compressed by the external 𝐁𝑎, where the maximum
comparison ratios at point (0, 0, 1) in different loading cases are shown in Figs. 6 (c) and (d). The reference solutions, depicted by
dashed lines, are generated using a model meshed with 4096 elements. Fig. 6(b) presents pressure contour plots for various mesh
izes at 𝐵3𝑀3𝐺−1 = −3. As the mesh refines (from left to right in the figure), the pressure distribution becomes increasingly defined
nd localized around the magnetized region.

This mesh convergence study demonstrates that the proposed mixed finite element framework achieves numerical stability and
ccuracy with mesh refinement. The convergence behavior shown in Fig. 6 validates the framework’s effectiveness in capturing the

complex interactions between magneto-mechanical forces and growth-induced deformations. The results indicate that with sufficient
efinement, the solution converges toward the reference solutions, confirming that the framework is both robust and computationally
fficient for practical engineering applications. For materials with a not too small ratio of modulus to magnetization, regardless
f whether free space is considered, the simulated results remain similar. However, the computational cost is significantly reduced
hen the free space is not included, showing that the efficiency can be improved by simplifying the model.

5. Modulation of surface pattern

In this section, we investigate the tunable surface patterns achieved through the application of an external magnetic field. To
enerate these surface patterns, growth-induced instability is introduced into the hard-film/soft-substrate structure. We demonstrate
hat these patterns can be tuned by adjusting the magnetic field.

5.1. Experimental setup and results

The preparation of the hard film and soft substrate is illustrated in Fig. 7(a). The materials used are:

• The hard film, made from a mixture of Ecoflex 00-30 Part A, Part B, and NdFeB powder (5 𝜇m) in a mass ratio of 1A:1B:1NdFeB.
This mixture is stirred uniformly, degassed, injected into a mold, and cured.

• The soft substrate, created from Mub-like silicon provided by POSILICON Inc., is prepared with the same process as the hard
film.

To achieve specific distributions of the magnetization density 𝐌, the samples are magnetized in a uniform magnetic field, orienting
he magnetic particles. For the first sample, it is folded and placed between the poles of an electromagnet. The second sample is
ivided into four partitions before magnetization. During the magnetization process, the position and angle of the sample within

the magnetic field are controlled to ensure that the internal 𝐌 has the following distributions:

𝐌 =

{

𝑀𝐞1, 𝑋 ∈ [0, 𝐿∕2)
− 𝑀𝐞1, 𝑋 ∈ [𝐿∕2, 𝐿] , 𝐌 =

⎧

⎪

⎪

⎨

⎪

⎪

𝑀(𝐞1 + 𝐞2), 𝑋 × 𝑌 ∈ [𝐿∕2, 𝐿] × [𝐿∕2, 𝐿]
𝑀(𝐞1 − 𝐞2), 𝑋 × 𝑌 ∈ [0, 𝐿∕2) × [𝐿∕2, 𝐿]
− 𝑀(𝐞1 + 𝐞2), 𝑋 × 𝑌 ∈ [0, 𝐿∕2) × [0, 𝐿∕2) . (61)
⎩

𝑀(−𝐞1 + 𝐞2), 𝑋 × 𝑌 ∈ [𝐿∕2, 𝐿] × [0, 𝐿∕2)
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Fig. 6. Compression of a block: (a) boundary conditions, the orientation of 𝐌 and 𝐁𝑎; (b) contour plots of pressure across different mesh sizes with 𝐵3𝑀3𝐺−1 = −3.
Mesh refinement and the maximum comparison ratios when dimensionless magnetic flux density 𝐵3𝑀3𝐺−1 = −{1, 2, 3} in the scenario of (c) with free space; (d)
without free space.

The hard film and the soft substrate are glued together using Ecoflex 00-30 silicone rubber.
As depicted in Fig. 7(b) and (c), the resulting structure has a reference configuration 𝑟 = 𝑋×𝑌 ×𝑍 = [0, 𝐿] × [0, 𝐿] × [0, 𝐻𝑠+𝐻𝑓 ],

where 𝐿 = 60 mm, 𝐻𝑠 = 34.5 mm, and 𝐻𝑓 = 3 mm. We place the samples in a frictionless cubic box so that the sizes of the samples
in the 𝑋 and 𝑌 directions are constrained when they experience growth and magnetic stimuli. With the applied growth field and
external magnetic stimuli, the sample reaches the current configuration 𝑡 = 𝑥 × 𝑦 × 𝑧 = [0, 𝐿] × [0, 𝐿] × [0, ℎ].

Symmetric displacement boundary conditions are prescribed on the lateral surfaces 𝑋 = {0, 𝐿}, 𝑌 = {0, 𝐿}, and the bottom face
𝑍 = 0. If the external magnetic field is generated by a sufficiently large or uniform magnetic source (such as a solenoid or Helmholtz
coil), the applied magnetic field in the sample region can be treated as approximately constant. For simplicity, we assume the external
𝐁𝑎 is constant and aligned with the 𝑍-axis. To better understand the magnetic effects on wrinkling, the growth factor 𝑔 is applied
over the time interval 𝑡 ∈ [0, 1]. From 𝑡 = 1 to the end of the loading process, the magnitude of 𝑔 is held constant. Subsequently,
an external magnetic field is introduced, and 𝐵3 is adjusted over the time interval 𝑡 ∈ [1, 5], as shown in Fig. 7(d). This sequential
loading process allows for the examination of the interplay between the growth-induced deformations and the magnetic field on
the surface patterns.

For simplicity, we assume that growth occurs in the planar directions (𝑋-𝑌 plane) of the whole structure, yielding a growth tensor
G = diag(𝑔 , 𝑔 , 1). Generally, the growth effect can be regarded as local volumetric changes. Inspired by the work of Budday et al.
(2017), in our experiments, we introduce a pre-strain into the samples to simulate the growth effect. Specifically, we first fabricate
the samples to have larger planar dimensions, corresponding to the grown state with stress-free dimensions of [0, 𝑔 𝐿] × [0, 𝑔 𝐿].
These samples represent the material after growth has occurred. We then squeeze these larger samples into the frictionless cubic
box, which has the original, ungrown dimensions of [0, 𝐿] × [0, 𝐿] × [0, ℎ]. By constraining the samples to these smaller dimensions,
we effectively impose a compressive pre-strain that simulates the growth effect. This approach ensures that the growth tensor for
the sample inside the box can be considered as G = diag(𝑔 , 𝑔 , 1). This method allows us to replicate the internal stresses and strains
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Fig. 7. Illustration of the hard film soft substrate samples: (a) Preparation of the samples; (b) geometry of the plane-strain sample; (c) geometry of the wrinkling
sample; (d) the loading path.

associated with planar growth, without the need for actual volumetric growth processes within the material. To obtain the shear
modulus 𝐺 of the film and substrate, uniaxial compression tests are conducted. By adopting the neo-Hookean material model (56),
the shear moduli for the film and substrate are calculated from the loading data as 𝐺𝑓 = 33.9 k Pa and 𝐺𝑠 = 1.2 k Pa, respectively.
Based on a prior work (Wang et al., 2024), the saturated magnetization is estimated as 𝑀 = 44.4 k A∕m.

In our experiments, magnetic loading is applied to modulate the surface patterns. Fig. 8 shows that the sample surface patterns
evolve in response to the external magnetic field, with distinct behaviors depending on the direction of 𝐁𝑎.

For the sample with a symmetric magnetization (Eq. (61)1), we observe from Fig. 8(a) that:

• The grown sample for 𝑔 = 1.1 is placed in a cubic box, where the inner wall is fully lubricated to reduce friction. At time 𝑡 = 1,
the sample exhibits instability under axial compression.

• As the magnetic field starts to apply with 𝐵3 > 0, the surface pattern becomes visibly distorted. At 𝑡 = 2, the mode of the
surface pattern changes. The wrinkles shift and realign, indicating a transition to a different wrinkling mode.

• Upon unloading at 𝑡 = 3, the amplitude of the wrinkles decreases slightly, and the pattern remains convex upward.
• When the magnetic loading is reversed to 𝐵3 < 0, the center of the sample depresses downward, characterized by the inversion

of the previous surface patterns.
• Finally, unloading at 𝑡 = 5 results in a pattern identical to the one observed at 𝑡 = 1.

For the sample (𝑔 = 1.08) with a quadrantal magnetization distribution (Eq. (61)2), as depicted in Fig. 8(b), the response to magnetic
loading exhibits similarities to the plane strain case.

These experimental results demonstrate that the surface patterns can be effectively modulated by adjusting the external magnetic
field, both in terms of the magnetic loading direction and the distribution of magnetization. The observed wrinkling modes and
their transitions under different magnetic loadings provide insight into the tunability of surface patterns in magneto-responsive
film–substrate systems.

5.2. Numerical simulations

To show the validity and robustness of the proposed numerical scheme, we simulate the evolution of surface patterns under
magnetic loading. A nonlinear analysis is used to simulate the post-buckling behavior, where a load perturbation is introduced in
17 
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Fig. 8. Experimental results showing the evolution of surface patterns under magnetic loading: (a) Sample with symmetric magnetization; (b) Sample with
quadrantal magnetization.

the growth stage. This perturbation is applied based on the desired shape and is removed at the end of the growth stage. For
example, in the first case, we applied traction on the surface of the hard film, with a larger magnitude at the center of the sample
and a smaller magnitude at the edges. This load is applied between 0.1 and 0.99 s, and at 𝑡 = 1 s, the load amplitude is reduced
to zero. Compared to the introduction of geometric imperfection, this load perturbation does not affect the subsequent magnetic
loading.

In order to save computational costs, we adopt a reduced model that simplifies the finite element model by removing the free
space region. Based on the results in Section 4, the shear modulus and magnetization density meet the required conditions, with the
stimulated magnetic field 𝐇𝑠 being negligible. The sample with symmetric magnetization is discretized into 3960 elements, while
the sample with quadrantal magnetization is discretized into 10368 elements. In Appendix B, we provide the results of the full
model with free space for the sample with symmetric magnetization, which show deformation similar to the reduced model.

Fig. 9(a) and (b) show the progressive deformation and stress distributions resulting from applied growth and magnetic
influences. As the growth factor increases from 1 to 𝑔, the sample experiences growth-induced instability, leading to surface pattern
formation. The magnetic loading process is consistent with the experimental setup described above. The magnitudes for the applied
magnetic field are 10 mT and 100 mT for the samples with symmetric and quadrantal magnetization, respectively. The simulated
evolution processes are in good agreement with the experimental results given in Fig. 8, showing that the proposed numerical
scheme is capable of describing such instability phenomenon.

To further elucidate the mechanisms of these observed phenomena, the variations in elastic and magnetic potential energy
profiles of the samples over time are illustrated in Fig. 9(c) and (d). When an external magnetic flux density 𝐁𝑎 is applied, the
remanent magnetization 𝐌 in the sample tends to align with 𝐁 . This alignment reduces the magnetic potential energy 𝛹 , which
𝑎 𝑚
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Fig. 9. Mises stress contours of the samples over the interval 𝑡 ∈ [0, 5]: (a) symmetric magnetization sample; (b) quadrantal sample; (c), (d) the elastic and
magnetic potential energy profiles of the two samples over time.

is similar to the gravitational potential energy. To analyze the evolution of the system’s energy, we compare the total energy of the
samples at 𝑡 = 1 (before magnetic loading) and 𝑡 = 5 (after magnetic unloading). Under the condition shown in Fig. 9(c), the total
energy of the sample after unloading nearly returns to a level comparable to the initial state. This indicates that the elastic potential
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Fig. 10. Wrinkling deformation and stress contour of the film–substrate sample under plane strain condition, where the growth factors 𝑔 = {1.0, 1.2}.

energy stored in the material is fully released upon the removal of the magnetic field, resulting in minimal residual internal stress
and bringing the system’s energy back close to its initial value. In contrast, under the condition depicted in Fig. 9(d), the total
energy after unloading is higher than the initial state, suggesting that some of the elastic potential energy remains unreleased. We
hypothesize that this is related to the larger magnetic loading and the resulting instability modes, which lead the system to form a
metastable state with slightly higher energy. Corresponding stress distribution in Fig. 9(b) also shows that certain local regions of
the sample retain high von-Mises stress after unloading, corroborating the increase in total energy. This indicates that after magnetic
loading and unloading cycles, the energy of samples undergoing growth-induced instability may exhibit residuals and fluctuations
to some extent, potentially impacting subsequent deformation behavior and performance.

To explore how growth factors influence pattern evolution, we adjust 𝑔 in the plane strain example to {1.0, 1.2} (see Fig. 10). In
the absence of growth (𝑔 = 1.0), the sample deforms solely in response to the applied magnetic field, leading to relatively modest
wrinkle amplitudes. As 𝑔 increases to 𝑔 = 1.2, growth-induced residual stresses amplify wrinkling. However, despite the application
of the magnetic field, the wrinkle pattern does not undergo any orientation change as previously observed. A higher level of external
magnetic field would be required to overcome the elevated elastic energy and modulate the wrinkles.

From the perspective of energy, when 𝑔 = 1, 𝛹𝑚 decreases with increasing 𝐁𝑎. This is accompanied by the generation of elastic
strain due to magnetic body forces, Div(𝐌)𝐁𝑎 (can be derived from Eq. (34)1). When 𝑔 > 1, the elastic strain energy rises during
the pure growth process, corresponding to the onset of the wrinkle instability. During the application of 𝐁𝑎 over 𝑡 ∈ [1, 2], the
magnetic potential energy increases first and then drops at the point where the total elastic energy (𝛹𝑒 + 𝛹PL) reaches a critical
level, triggering a wrinkle reorientation. At sufficiently high 𝑔 (e.g., 𝑔 = 1.2), the increased elastic strain dominates the response,
preventing significant wrinkle reorientation despite changes in 𝛹𝑚. Consequently, the accumulated magnetic potential 𝛹𝑚 is no
longer strong enough to overcome this larger energy barrier, meaning that further increases in 𝐁𝑎 are necessary to induce any
orientation shift under higher growth conditions.

5.3. Discussion

The experimental and numerical investigations in this study demonstrate the potential of external magnetic fields to modulate
surface patterns in magneto-active film–substrate systems. By combining growth-induced instability with targeted magnetic loading,
tunable surface patterns are achieved. The results indicate that both the direction and magnitude of the magnetic field, along
with the specific distribution of magnetization within the sample, are crucial in determining the final wrinkle configuration. The
introduction of growth is found to significantly enhance wrinkle amplitude, suggesting that growth-induced residual stresses can
effectively compensate for the typically small deformations in magneto-polymers. Additionally, to achieve the transformation of
surface patterns, the magnetic potential energy (𝛹𝑚) must be sufficient to overcome the energy barrier imposed by the elastic
stability of the sample. The observed multi-stable states and the reversible switching between different wrinkle patterns underscore
the potential for designing adaptive surface structures with controllable mechanical and functional properties.

Although there are noticeable discrepancies between the two sets of results, our model captures the primary characteristics of the
deformation behavior, indicating its fundamental validity. The consistency of major features between the model and experimental
observations suggests that the core mechanisms are represented. Specifically, differences are observed in the amplitude of the
wrinkles exhibited by the samples. In both cases, the experimental results exhibit larger wrinkle amplitudes compared to the
numerical simulation, particularly under higher magnetic loads. Actually, the existence of instability within our system introduces
significant uncertainties, making it challenging to have precise quantitative descriptions. Specifically, the deformation resulting from
such instabilities is highly sensitive to material parameters, growth factors, and boundary conditions. This sensitivity complicates
the accurate modeling and prediction of deformation modes. The other factors could contribute to these discrepancies: (1) In our
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experiments, the samples are relatively large, and the magnetic field generated by the electromagnet may not be perfectly uniform
cross the entire sample. The non-uniformity of the magnetic field can lead to variations in the magnetic forces acting on different
egions of the sample, resulting in complex deformation patterns that are not captured by the numerical simulations, which assume
 uniform magnetic field. (2) Although the samples are placed in a frictionless cubic box in both experiments and simulations,
chieving perfectly frictionless conditions in practice is challenging. Any residual friction between the sample and the box walls
an influence the deformation patterns by constraining the lateral movement of the sample, leading to discrepancies between
xperimental observations and numerical predictions.

6. Modulation of biological morphogenesis

Inspired by the work of Yu and Chen (2024), we apply our numerical framework to explore a biological phenomenon: the
inversion process of the algal genus Volvox (as shown in Fig. 11(a)). The inversion process in the Volvox embryo is a fascinating and
complex biological event (Cole and Reedy, 2003; Höhn et al., 2015; Haas and Goldstein, 2015). Initially, the flagella (the whip-like
structures used for movement) of the cells are oriented inward, facing the inside of the sphere. As the inversion process begins, the
Volvox colony starts to roll over itself, initiating a coordinated movement where the outer layer of cells begins to turn inward. As
he rolling motion continues, the spherical structure transforms into a deep cup-like shape. After inversion, the cells with flagella

are positioned on the outside, allowing the Volvox to swim efficiently. The fully inverted and mature Volvox colony is shown in
Fig. 11(b), with the flagella correctly positioned on the outside, enabling motility and proper functioning for further development
nd reproduction. To demonstrate the capabilities of our proposed numerical framework, we employ a magnetic field as an external

and controllable stimulus to simulate the deformation during inversion. While magnetic fields are not a naturally occurring factor
in the Volvox inversion process, they serve here as a computational analogy to explore the mechanics of inversion. This approach
allows us to investigate how external forces might modulate and drive complex shape transformations, offering insights into general
morphogenetic mechanisms. Moreover, the actual biological driving forces of Volvox inversion are known to involve a combination
of the relocation of the cytoplasmic bridges, differential cell growth, and tissue elasticity (Matt and Umen, 2016). The inversion
process in Volvox provides inspiration for the design of biomimetic devices, such as self-reconfiguring robots and deployable medical
evices.

For the sake of computational efficiency, the simulation is divided into two stages. The first stage involves growth from a circular
plate-like structure to an approximately spherical shell. This stage accounts for the biological growth factors that cause the expansion
and curvature of the structure, mimicking the natural development of the Volvox embryo. The second stage simulates the inversion
rocess itself, which is driven by an external magnetic field. Here, we conceptualize the artificial Volvox as a soft shell-like structure
mbedded with responsive magnetic particles. The magnetic actuation triggers the inversion by inducing localized forces that mimic
he deformation observed in the biological system.

As depicted in Fig. 11(c), the reference configuration of the sample is a circular plate with inner radius 𝑟𝑖 = 0.01, outer radius
𝑟𝑜 = 0.5, and thickness ℎ = 0.04. The axis of symmetry of the plate is located at 𝑋 = 𝑌 = 0. The shear modulus of the plate
s set as 𝐺 = 33.3 k Pa. To improve computational efficiency, only a quarter of the plate is modeled, which is meshed into 7840

hexahedral elements. Symmetric boundary conditions of displacement are prescribed on the cross-sections. To fully remove the
igid body motion, the inner edge of the bottom face is constrained in the 𝑍-direction. As shown in Fig. 11(c), the magnetization
ensity 𝐌 (k A∕m) has a non-uniform distribution

𝐌 = 102
√

𝑋2 + 𝑌 2
(

𝑋𝐞1 + 𝑌 𝐞2 + 𝐞3
)

, (62)

while the external 𝐁𝑎 = 𝐵3𝐞3 is aligned with the 𝑍-axis.
In the loading process, the plate deforms as the growth tensor gradually transitions from I to the target G over the time interval

𝑡 ∈ [0, 1]:
G = diag{𝜆, 𝜆, 2},
𝜆 = − 2𝛼 𝑅(𝑍 − 1)

𝑅2 + 𝛼2
(

𝑋2 + 𝑌 2
) , 𝛼 = 1.6, 𝑅 = 0.5. (63)

In the growth process shown in Fig. 11(d), the plate undergoes deformation driven by the prescribed growth tensor G. This tensor
controls the expansion and shape change of the plate, transitioning it from its initial flat configuration to a more complex three-
dimensional structure. Then, the external 𝐁𝑎 starts to apply to the grown sample while the growth tensor remains at the target

in (63). As depicted in Fig. 11(e), this magnetic loading during the time interval 𝑡 ∈ [1, 2] causes the structure to invert, with
he initially convex shape transforming into a concave form, mimicking the inversion process observed in biological systems. The

magnetic forces drive this inversion by creating localized stresses that cause the structure to fold and flip over. Upon unloading
𝑡 ∈ [2, 3]), with 𝐁𝑎 removed, the structure returns to a sphere-like shell configuration; it still remains in the inverted position,
owever.

The numerical framework employed in this study simulates the complex deformation processes inspired by Volvox inversion. The
two-stage simulation, involving growth-driven deformation followed by magnetic actuation, captures the transition from a flat plate
to a spherical structure and its subsequent inversion. The ability to simulate such intricate behaviors demonstrates the robustness and
versatility of the numerical approach, which can be applied to the design and optimization of adaptive, shape-morphing materials
and devices.
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Fig. 11. (a) Illustration of the inversion process in a Volvox embryo; (b) Fully inverted and mature Volvox colony with flagella positioned on the outside (image
taken from WikimediaCommons, licensed under CC BY-SA 4.0); (c) Reference configuration of the circular plate; (d) Growth process of the plate; (e) Magnetic
loading process.

7. Conclusions

This study proposes a numerical framework to understand the coupled magneto-mechanical growth behavior of hyperelastic
materials. The main findings are summarized as follows:

• We develop the 3D governing equations and finite element formulations for coupled magneto-mechanical growth in soft
materials. This extension provides a theoretical basis for understanding the interplay between magnetic fields, mechanical
forces, and growth behavior in soft materials.

• Benchmark tests show agreement with analytical solutions, verifying the framework’s robustness and accuracy across various
mesh sizes. If the material is relatively stiff and the magnetization is not particularly strong, the reduced model can be used,
as it provides a good approximation while significantly reducing computational cost.

• By combining growth-induced instabilities with external magnetic fields, we demonstrate the tunability of surface patterns in
magneto-active film–substrate systems. The introduction of growth enhances the responsiveness of these materials, which is
also demonstrated experimentally.

• Inspired by the inversion process in Volvox embryos, we simulate similar deformations in magneto-active plates. These
simulations show the capability to mimic the complex shape transformations observed in biological systems, suggesting
potential applications in designing adaptive, shape-morphing materials and devices.
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The proposed framework can be further extended to diverse applications, including soft robotics, flexible electronics, and bio-inspired
engineering. It also opens avenues for further exploration into the multi-physical behaviors of soft materials, where growth, magnetic
fields, and mechanical forces interact in complex ways.

Despite the proposed framework has demonstrated capabilities in modeling coupled magneto-mechanical growth in soft mate-
ials, certain limitations and areas for improvement are identified. Firstly, the computational resource consumption is substantial.
he current framework’s handling of free space requires significant memory and computation time, as the free space mesh typically
onstitutes the major part of the model. This approach is neither economical nor practical for engineering applications. Future

work may focus on enhancing computational efficiency. Developing adaptive or hybrid algorithms for free space modeling, such
as boundary element methods or fluid-inspired methods, could substantially reduce computational consumption. Additionally,
extending the framework to incorporate advanced constitutive models (e.g., Ogden or Gent models) would improve its ability to
apture nonlinear elastic responses. Integrating viscoelasticity is another critical step to model time-dependent material behavior
bserved in experimental studies. Finally, extending the theory to account for growth-induced variations in material properties, such
s elastic modulus, would further bridge the gap between simulations and real-world material behavior.
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Appendix A. The second variation of energy functional

The second variation of the total energy functional 𝛱 for the magneto body can be written as

d(𝛿 𝛱) =∫𝑟

d
[

t r (𝛿FS) + 𝛿 𝑝
(

𝐽 − 𝐽𝐺 −
𝑝
𝜅
𝐽𝐺

)

+ 𝑝𝛿 𝐽

+ 𝜇0𝐽
(

F−T (𝛿FT)𝐇𝑠 + g r ad 𝛿 𝜙) ⋅𝐦 − 𝜇0
(

𝐇𝑎 +𝐇𝑠
)

⋅ 𝛿F𝐌

− 1
2
𝜇0(𝛿 𝐽 )𝐇𝑠 ⋅𝐇𝑠 + 𝜇0𝐽𝐇𝑠 ⋅

(

F−T (𝛿FT)𝐇𝑠 + g r ad 𝛿 𝜙)
]

d𝑉

=∫𝑟

{

𝛿 𝑢𝑖,𝑗
[

𝐹𝑗 𝐽
𝜕�̄�𝐽 𝑖
𝜕 𝐹𝑘𝐿

𝐹𝑙 𝐿 + 𝑝𝐽
(

𝛿𝑖𝑗𝛿𝑘𝑙 − 𝛿𝑗 𝑘𝛿𝑖𝑙
)

]

d𝑢𝑘,𝑙

+ 𝛿 𝑢𝑖,𝑗 𝜇0𝐽
(

𝜙,𝑖𝛿𝑘𝑗 + 𝜙,𝑗𝛿𝑖𝑘 − 𝜙,𝑘𝛿𝑖𝑗
)

d𝜙,𝑘

+ 𝛿 𝜙,𝑖 𝜇0𝐽
(

𝜙,𝑖𝛿𝑘𝑗 + 𝜙,𝑗𝛿𝑖𝑘 − 𝜙,𝑘𝛿𝑖𝑗
)

d𝑢𝑗 ,𝑘 − 𝛿 𝜙,𝑖 𝜇0𝐽 𝛿𝑖𝑗 d𝜙,𝑗

+ 𝐽 𝛿 𝑝 d𝑢𝑖,𝑖 − 𝛿 𝑝𝐽𝐺
𝜅

d𝑝 + 𝐽 𝛿 𝑢𝑘,𝑘 d𝑝
}

d𝑉

=∫𝑡

(

𝛿 𝑢𝑖,𝑗 e𝑖𝑗 𝑘𝑙 d𝑢𝑘,𝑙 + 𝛿 𝑢𝑖,𝑗 p𝑖𝑗 𝑘 d𝜙,𝑘 + 𝛿 𝜙,𝑖 p̂𝑖𝑗 𝑘 d𝑢𝑗 ,𝑘 + 𝛿 𝜙,𝑖 d𝑖𝑗 d𝜙,𝑗
)

d𝑣

+ ∫𝑡

(

𝛿 𝑝 d𝑢𝑖,𝑖 + 𝛿 𝑢𝑘,𝑘 d𝑝 − 𝛿 𝑝 𝐽𝐺
𝜅 𝐽 d𝑝

)

d𝑣,

(A.1)

where the relations below are used
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Fig. B.12. Mises stress contours of the sample over the interval 𝑡 ∈ [0, 5].

d (𝛿 𝐽 ) = 𝛿 𝑢𝑖,𝑗𝐽
(

𝛿𝑖𝑗𝛿𝑘𝑙 − 𝛿𝑗 𝑘𝛿𝑖𝑙
)

d𝑢𝑘,𝑙 ,

�̄�𝐽 𝑖 =
𝜕 𝛹𝑒
𝜕 𝐹𝑖𝐽

+
𝜕 𝛹𝑚
𝜕 𝐹𝑖𝐽

=
𝜕 𝛹𝑒
𝜕 𝐴𝑖𝑀

𝐺−1
𝐽 𝑀 +

𝜕 𝛹𝑚
𝜕 𝐹𝑖𝐽

,

e𝑖𝑗 𝑘𝑙 = 𝐽−1𝐹𝑗 𝐽
𝜕�̄�𝐽 𝑖
𝜕 𝐹𝑘𝐿

𝐹𝑙 𝐿 + 𝑝
(

𝛿𝑖𝑗𝛿𝑘𝑙 − 𝛿𝑗 𝑘𝛿𝑖𝑙
)

,

p𝑖𝑗 𝑘 = p̂𝑖𝑗 𝑘 = 𝜇0
(

𝜙,𝑖𝛿𝑘𝑗 + 𝜙,𝑗𝛿𝑖𝑘 − 𝜙,𝑘𝛿𝑖𝑗
)

,

d𝑖𝑗 = −𝜇0𝛿𝑖𝑗 .
For the free space, the second variation of the energy functional can be obtained by simply setting magnetization 𝐌 = 𝟎 in the
above equation.

Appendix B. The simulated results of the full model

In this finite element model, the free space region is included. The sample is discretized into 3960 elements, while the free space
region (5 times large as the sample) is meshed with 6706 elements. The simulated results of the full model, shown in Fig. B.12,
are similar to those obtained from the reduced model. However, the computational cost of the full model is significantly higher. By
comparing the results of the full and reduced models, we find that the free space region has a negligible effect on the deformation of
the sample. Therefore, if the effect of the stimulated magnetic field 𝐇𝑠 is not a primary concern, the reduced model is recommended
for efficiency.

Appendix C. Supplementary data

Video S1: The experimental and simulated deforming processes of the film-substrate and the Volvox embryo examples.
.INP and .FOR files: the ABAQUS input files for the examples and the related UEL subroutine files. All the codes are available at

https://github.com/Jeff97/Magneto-growth-MixedFEM
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmps.2025.106089.

Data availability

Data will be made available on request.
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